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Preface

The propagator approach to a relativistic quantum theory pioneered
in 1949 by Feynman has provided a practical, as well as intuitively
appealing, formulation of quantum electrodynamics and a fertile
approach to a broad class of problems in the theory of elementary
particles. The entire renormalization program, basic to the present
confidence of theorists in the predictions of quantum electrodynamics,
is in fact dependent on a Feynman graph analysis, as is also con-
siderable progress in the proofs of analytic properties required to write
dispersion relations. Indeed, one may go so far as to adopt the
extreme view that the set of all Feynman graphs 7s the theory.

vii



Preface

We do not advocate this view in this book nor in its companion
volume, “‘Relativistic Quantum Mechanics,” nor indeed do we advocate
any single view to the exclusion of others. The unsatisfactory status
of present-day elementary particle theory does not allow one such a
luxury. In particular, we do not wish to minimize the importance of
the progress achieved in formal quantum field theory nor the con-
giderable understanding of low-energy meson-nucleon processes given
by dispersion theory. However, we give first emphasis to the develop-
ment of the Feynman rules, proceeding directly from a particle wave
equation for the Dirac electron, integrated with hole-theory boundary
conditions.

Three main convictions guiding us in this approach were the
primary motivation for undertaking these books:

1. The Feynman graphs and rules of calculation summarize
quantum field theory in a form in close contact with the experimental
numbers one wants to understand. Although the statement of the
theory in terms of graphs may imply perturbation theory, use of
graphical methods in the many-body problem shows that this formal-
ism is flexible enough to deal with phenomena of nonperturbative
character (for example, superconductivity and the hard-sphere Bose
gas).

2. Some modification of the Feynman rules of calculation may
well outlive the elaborate mathematical structure of local canonical
quantum field theory, based as it is on such idealizations as fields
defined at points in space-time. Therefore, let us develop these rules
first, independently of the field theory formalism which in time may
come to be viewed more as a superstructure than as a foundation.

3. Such a development, more direct and less formal—if less com-
pelling—than a deductive field theoretic approach, should bring
quantitative calculation, analysis, and understanding of Feynman
graphs into the bag of tricks of a much larger community of physicists
than the specialized narrow one of second quantized theorists. In
particular, we have in mind our experimental colleagues and students
interested in particle physics. We believe this would be a healthy
development.

Our original idea of one book has grown in time to two volumes.
In the first book, “Relativistic Quantum Mechanics,” we develop a
propagator theory of Dirac particles, photons, and Klein-Gordon
mesons and perform a series of calculations designed to illustrate
various useful techniques and concepts in electromagnetic, weak, and
strong interactions. These include defining and implementing the
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renormalization program and evaluating effects of radiative correc-
tions, such as the Lamb shift, in low-order calculations. The necessary
background for this book is provided by a course in nonrelativistic
quantum mechanics at the general level of Schiff’s text ‘“‘Quantum
Mechanics.”

In the second book, “Relativistic Quantum Fields,” we develop
canonical field theory, and after constructing closed expressions for
propagators and for scattering amplitudes with the LSZ reduction
technique, return to the Feynman graph expansion. The perturbation
expansion of the scattering amplitude constructed by canonical field
theory is shown to be identical with the Feynman rules in the first
book. With further graph analysis we study analyticity properties of
Feynman amplitudes to arbitrary orders in the coupling parameter
and illustrate dispersion relation methods. Finally, we prove the
finiteness of renormalized quantum electrodynamics to each order of
the interaction.

Without dwelling further on what we do, we may list the major
topics we omit from discussion in these books. The development of
action principles and a formulation of quantum field theory from a
variational approach, spearheaded largely by Schwinger, are on the
whole ignored. We refer to action variations only in search of sym-
metries. There is no detailed discussion of the powerful developments
in axiomatic field theory on the one hand and the purely S-matrix
approach, divorced from field theory, on the other. Aside from a
discussion of the Lamb shift and the hydrogen atom spectrum in the
first book, the bound-state problem is ignored. Dynamical applica-
tions of the dispersion relations are explored only minimally. A
formulation of a quantum field theory for massive vector mesons is not
given—nor is a formulation of any quantum field theory with deriva-
tive couplings. Finally, we have not prepared a bibliography of all
the significant original papers underlying many of the developments
recorded in these books. Among the following recent excellent books
or monographs is to be found the remedy for one or more of these
deficiencies:

Schweber, S.: “An Introduction to Relativistic Quantum Field Theory,” New
York, Harper & Row, Publishers, Inc., 1961.

Jauch, J. M., and F. Rohrlich: “The Theory of Photons and Electrons,” Cam-
bridge, Mass., Addison-Wesley Publishing Company, Inc., 1955.

Bogoliubov, N. N., and D. V. Shirkov: “Introduction to the Theory of Quantized
Fields,”” New York, Interscience Publishers, Inc., 1959.

Akhiezer, A., and V. B. Bereztetski: “Quantum Electrodynamies,” 2d ed., New
York, John Wiley & Sons, Inc., 1963.
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Umezawa, H.: “Quantum ¥ield Theory,”” Amsterdam, North Holland Publishing
Company, 1956.

Hamilton, J.: “Theory of Elementary Particles,”” London, Oxford University
Press, 1959.

Mand], F.: “Introduction to Quantum Field Theory,” New York, Interscience
Publishers, Inc., 1960.

Roman, P.: “Theory of Elementary Particles,”” Amsterdam, North Holland
Publishing Company, 1960.

Wentzel, G.: “Quantum Theory of Field,”” New York, Interscience Publishers,
Inc., 1949.

Schwinger, J.: “Quantum Electrodynamics,” New York, Dover Publications,
Inc., 1958.

Feynman, R. P.: “Quantum Electrodynamics,”” New York, W. A. Benjamin,
Inc., 1962.

Klein, L. (ed.): “Dispersion Relations and the Abstract Approach to Field Theory,”’
New York, Gordon and Breach, Science Publishers, Inc., 1961

Screaton, G. R. (ed.): “Dispersion Relations; Scottish Universities Summer
School,”” New York, Interscience Publishers, Inc., 1961.

Chew, G. F.: “S-Matrix Theory of Strong Interactions,”” New York, W. A.
Benjamin, Inc., 1962.

In conclusion, we owe thanks to the many students and colleagues
who have been invaluable critics and sounding boards as our books
evolved from lectures into chapters, to Prof. Leonard I. Schiff for
important initial encouragement and support to undertake the writing
of these books, and to Ellen Mann and Rosemarie Stampfel for
marvelously cooperative secretarial help.

James D. Bjorken
Sidney D. Drell
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Intuitive and correspondence arguments were used in ‘“Relativistic
Quantum Mechanics” in developing the propagator approach and
giving practical rules for calculating, in perturbation theory, inter-
actions of relativistic particles. We now turn to a systematic deriva-
tion of these rules from the formalism of quantized fields. Our motiva-
tion is first to “patch up the holes” in our arguments in the propagator
approach and then to develop a formalism which might be applied to
problems for which perturbation theory is not adequate, such as
processes involving strongly coupled mesons and nucleons.

Our approach is best illustrated by the electromagnetic field.
The potentials A*(x) satisfy the Maxwell wave equations and may be
considered as describing a dynamical system with an infinite number
of degrees of freedom. By this we mean that A#(z) at each point of
space may be considered an independent generalized coordinate. To
make the transition from classical to quantum theory, we must, accord-
ing to the general principles proclaimed in Chap. 1,' elevate coordi-
nates and their conjugate momenta to operators in the Hilbert space
of possible physical states and impose quantum conditions upon them.
This is the canonical quantization procedure. It is a straightforward
extension to field functions, which obey differential wave equations
derivable from a lagrangian, of the quantization procedure of non-
relativistic mechanics. When it is done, there emerges a particle
interpretation of the electromagnetic field—in the sense of Bohr's
principle of complementarity.

If photons emerge in such a natural way from the quantization
of the Maxwell field, one is led to ask whether other particles whose
existence is observed in nature are also related to force fields by the
same quantization procedure. On this basis Yukawa predicted the
existence of the = meson from knowledge of the existence of nuclear
forces. Conversely, it is natural from this point of view to associate
with each kind of observed particle in nature a field ¢(x) which satisfies
an assumed wave equation. A particle interpretation of the field ¢ is
then obtained when we carry through the canonical quantization
program.

In such a program we must first define the momenta r(x) conju-
gate to the field coordinates ¢(x). We do thisin terms of a lagrangian,
from which the wave equation for each field ¢(x) as well as the conju-
gate momenta are derivable. Applying the canonical quantization
procedure with the commutator condition of Chap. 1, we obtain field
quanta, such as photons, which obey Bose statistics. In order to

1 References to Chaps. 1 to 10 or parts thereof are references to the companion
volume, “Relativistic Quantum Mechanics.”

2
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11.1

describe Fermi particles which obey an exclusion principle with a simi-
lar quantum field formalism, it turns out to be necessary only to replace
the quantum commutator conditions by anticommutator relations.

In this way a unified formalism which provides a basis for the
description of both kinds of particles can be constructed. An addi-
tional attractive feature of the lagrangian approach which will be
seen shortly is that it leads directly to the conservation laws.

Implications of a Description in Terms of Local Fields

Before continuing and exploring the consequences of applying the
quantization procedure to classical fields which satisfy wave equations,
it is perhaps worthwhile to discuss the implications of such a program.
The first is that we are led to a theory with differential wave propaga-
tion. The field functions are continuous functions of continuous
parameters x and ¢, and the changes in the fields at a point x are deter-
mined by properties of the fields infinitesimally close to the point x.

For most wave fields (for example, sound waves and the vibrations
of strings and membranes) such a description is an idealization which
is valid for distances larger than the characteristic length which meas-
ures the granularity of the medium. For smaller distances these
theories are modified in a profound way.

The electromagnetic field is a notable exception. Indeed, until
the special theory of relativity obviated the necessity of a mechanistic
interpretation, physicists made great efforts to discover evidence for
such a mechanical description of the radiation field. After the require-
ment of an “‘ether” which propagates light waves had been abandoned,
there was considerably less difficulty in accepting this same idea when
the observed wave properties of the electron suggested the introduction
of a new field ¢(z). Indeed there is no evidence of an ether which
underlies the electron wave ¢(x,t). However, it is a gross and pro-
found extrapolation of present experimental knowledge to assume that
a wave description successful at ‘“large” distances (that is, atomic
lengths = 10~8 ¢cm) may be extended to distances an indefinite number
of orders of magnitude smaller (for example, to less than nuclear
lengths = 10~ cm).

In the relativistic theory, we have seen that the assumption that
the field description is correct in arbitrarily small space-time intervals
has led—in perturbation theory—to divergent expressions for the
electron self-energy and the “bare charge.” Renormalization theory
has sidestepped these divergence difficulties, which may be indicative
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of the failure of the perturbation expansion. However, it is widely
felt that the divergences are symptomatic of a chronic disorder in the
small-distance behavior of the theory.

We might then ask why local field theories, that is, theories of
fields which can be described by differential laws of wave propagation,
have been so extensively used and accepted. There are several rea-
sons, including the important one that with their aid a significant
region of agreement with observations has been found, examples of
which have already appeared in the discussions of the companion
volume. But the foremost reason is brutally simple: there exists no
convincing form of a theory which avoids differential field equations.

A theory of the interaction of relativistic particles is necessarily
of great mathematical complexity. Because of the existence of crea-
tion and annihilation processes it is at once a theory of the many-body
problem. At the present time one knows how to develop only approxi-
mate solutions to this problem, and therefore the predictions of any
such theory are incomplete and at best somewhat ambiguous.

Faced with this situation, the most reasonable course to steer
in constructing theories is to retain the general principles which have
worked before in a more restricted domain. In this case, this includes
the prescription for quantization which strongly involves the existence
of a hamiltonian H. However, since H generates infinitesimal time
displacements according to the Schrédinger equation, we are led to a
description with differential development in time. Lorentz invariance
then requires a differential development in space as well. A hamil-
tonian may well not exist for a nonlocal “granular” theory; if it does
not, the link connecting us with the quantization methods of non-
relativistic theories is broken.

If we simply retain the notion of a Lorentz-invariant microscopic
description in terms of continuous coordinates x and ¢, we expect that
the influence of interactions should not propagate through space-time
with velocity faster than ¢. This notion of “microscopic causality”
strongly forces us into the field concept. Even if there is a granularity
at small distances, if we are to retain microcausality the influence
of one “granule” upon the next must be retarded ; the most natural way
to describe this is with additional fields. The problem thus becomes
more complicated, without corresponding gain in understanding.

There is no concrete experimental evidence of a granularity at
small distances.! There is likewise nothing but positive evidence that

1In quantum electrodynamics there exists an agreement between theory and
experiment to very great precision in both low- and high-energy processes. See, for
example, R. P. Feynman, Rept. Solvay Congr., Brussels, Interscience Publishers,
Ine., New York, 1961
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special relativity is correct in the high-energy domain, and further-
more, there is, if anything, positive evidence! that the notion of micro-
scopic causality is a correct hypothesis. Since there exists no alterna-
tive theory which is any more convincing, we shall hereafter restrict
ourselves to the formalism of local, causal fields. It is undoubtedly
true that a modified theory must have local field theory as an appro-
priate large-distance approximation or correspondence. However, we
again emphasize that the formalism we develop may well describe only
the large-distance limit (that is, distances > 10~!3 cm) of a physical
world of considerably different submicroscopic properties.

11.2 The Canonical Formalism and Quantization Procedure
for Particles

To preface our development, we recall the familiar path to the quanti-
zation of a classical dynamical system in particle mechanics. For
purposes of illustration consider the one-dimensional motion of a parti-
cle in a conservative force field. We let ¢ be the (generalized) coordi-
nate of the particle, ¢ = dg/dt the velocity, and L(q,§) the lagrangian.
According to Hamilton’s principle, the dynamics of the particle is
determined by the condition

o =3 [“Lgddt =0 (1L.1)

Equation (11.1) states that the actual physical path ¢(¢f) which the
particle follows in traversing the interval from (qi,t1) to (gs,f2) is that
along which the action J is stationary. Thus small variations from
this path, ¢(t) — q(¢) + 8¢(?), as shown in Fig. 11.1, leave the action
unchanged to first order in the variation.

Hamilton’s principle leads directly to the Kuler-Lagrange equa-
tions of motion?

Zw — == =0 (11.2)

In order to carry out the formal quantization of this equation, we
rewrite it in hamiltonian form. We do so by defining the momentum
p conjugate to g,
_ oL
=%
1We mean by this the experimental verification of the dispersion relations for
forward pion-nucleon scattering, to be discussed in Chap. 18.
2 Cf. H. Goldstein, “Classical Mechanics,” Addison-Wesley Publishing Com-
pany, Inc., Reading, Mass., 1950. The form of (11.2) applies for no higher than
the first derivative of the coordinates appearing in L.

(11.3)
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Fig. 11.1 Variation in path with fixed end
points for action principle.

and introducing the hamiltonian by the Legendre transformation

H(p,q) = pg — L(g,9) (11.4)
In terms of H, the equation of motion (11.2) becomes
oH . 0H .
{H,q}es = a4 and  {H,jples = — Eriak (11.5)

where { }pp means a Poisson bracket.

To quantize (11.5), we let ¢ become a hermitian operator in a
Hilbert space and replace p by —¢ 3/dq so that the conjugate momen-
tum and coordinate satisfy a commutator relation

p,g] = —1 (11.6)

corresponding to the classical Poisson bracket {p,g}es = 1. With
this definition, p is also hermitian. The dynamics of the particle is
contained in the Schrédinger equation

Hipgy() = i 220 (11.7)
where ¥ is the wave function, or state vector, in the Hilbert space.
If we specify the initial state ¥ at an arbitrary time, say ¢ = 0, the
Schrodinger equation determines the state and hence physical expecta-
tion values at all future times.

This formulation of the time development of the motion of the
particle, with the time dependence carried in ¥ while the operators
p and ¢ are not time-dependent, is known as the Schrédinger picture.
Alternatively, we may express the time development of the motion in
a different language in which the operators p(f) and q(f) carry the
time dependence instead of the state vectors ¥. This is known as the
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Heisenberg picture and is equivalent to the Schrédinger picture, as
can be shown formally by constructing the unitary transformation
which relates the two pictures to each other. Formally integrating
the Schrédinger equation (11.7), we have

Vs(f) = e~HT5(0) = e~y (11.8)

where the operator e~#¢ is unitary for hermitian H and gives the time
development of ¥s(t). The value of ¥g at ¢ = 0 is the Heisenberg
state vector ¥ = ¥5(0). The time-independent operators Og are
transformed into the time-dependent Heisenberg operators according to

OH(t) = ¢H!(Qge—iHt (119)

The unitary operator transformation (11.9) is so constructed as to keep
matrix elements and thereby physical observables invariant.

The solution of a dynamical problem in quantum theory consists
in finding, at a later time ¢, matrix elements of operators which repre-
sent physical observables if given their matrix elements at some initial
time, say ¢ = 0. In the Schrédinger picture we do this by solving
(11.7) for the time development of the wave function. In the Heisen-
berg picture, on the other hand, we solve the equation of motion for
the time development of the Heisenberg operator which, by (11.9), is!

doa’;t(‘) — i[H,0a(0)] (11.10)

As long as we deal with energy eigenfunctions in the nonrelativistic
theory there is little practical difference between the two schemes.
According to (11.9), Hu(t) = Hs = H, and in the absence of external
time-varying forces (11.10) shows that dH /dt = 0. For energy eigen-
functions the Schrodinger wave function is ¥.(q,t) = e *tu,(q), and
the corresponding Heisenberg function is u,(q).

In the relativistic field theory, however, we shall find the Heisen-
berg picture to be more convenient, since the explicit representation
of the state vector ¥ is considerably more awkward than in the non-
relativistic case and the dynamics of the operators is casier to describe
than the dynamics of ¥. In addition, in developing the field theory
we shall see the Lorentz invariance more readily in the Heisenberg
picture, which puts the time together with the space coordinates in the
field operators.

1 For operators which are explicit functions of the time coordinate, (11.10)
hecomes

g_q;:_t) = [H,0u(t)] + %
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In the Helsenberg picture it follows from (11.6) and (11.9) that
the fundamental commutator conditions retain the form

[p®,q®)] = =1 (11.11)

for an arbitrary time ¢, and we may write
i)
)= —1—~= and ) =1 —=

Thus the dynamies expressed by (11.10) for the canonical coordinate
and momentum

dp(t) _ dg(t) _ .

LD~ qHp@®) L = qH g0 (11.12)
can now be recast in the form of the classical equations of motion for
the operators

dp(t) _ _ 0H  dq(t) _
Y1) dt  ap(t)

This formulation of the quantum-dynamical problem in terms of
Heisenberg operators is quite similar to the original classical formula-
tion, which we shall often turn to and imitate. The dynamical varia-
bles in the quantum theory are hermitian operators p(f) and ¢(¢) which
satisfy equations of motion identical to the classical equations (11.5).
To completely determine the dynamical problem, we must specify the
matrix elements of the operators p and ¢ at the initial time. The
initial conditions on p(0) and ¢(0) posed in the classical theory must
be supplemented here by the requirement that the commutator condi-
tions (11.11) are fulfilled at ¢ = 0 for any physical state. Since by
postulate the physical states of a system—for example, the energy
eigenstates—form a complete set, the initial commutator condition
may be stated as an operator requirement as in Eq. (11.11).

To illustrate this procedure, we quantize the simple harmonic
oscillator in one dimension in the Heisenberg picture. The hamil-
tonian is

H = 2%4(p* + wig?) (11.13)
with equations of motion

) =D = 40y g4 aig=0

To solve for the coordinates, we introduce the convenient linear
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combinations

1 . .
o= 4 /% (wog +7p)  a =4 /5333 (wog — ip)  (11.14)

in terms of which the equations of motion are
i) = —twua(®) dt@t) = +iwea’(¥)
The solutions are
a(t) = ageiot at(t) = aletion (11.15)
where @ and a} are time-independent operators which satisfy com-
mutator relations following from (11.11):
[a(®),a'®] = [aall =1 [a(®),a(®)] = [ag,ad] = 0 (11.16)
[a"(®),a' ()] = laf,al] = 0
In terms of a and a' the hamiltonian is
H = Ywo(ata + aa') = Ywe(alao + acal) (11.17)

Since any state ¥ may be expanded in stationary eigenfunctions
¥, of H, we need only find the properties of ¥,. From the commuta-
tion relations we have

[H,ao) = —woao and  [H,al] = +woal (11.18)

Thus if HY, = w.¥,, Hal¥, = (v, + wo)ai¥, and we generate an
infinite series of states of higher energy—starting with a given ¥,
corresponding to energy eigenvalue w,—by successive applications
of the operator a}: al¥, = ¥,.;. Likewise, if

H‘I’n = w,.‘If,,, HCL()‘I’,; = (w,, - wo)ao\l’n

and by successive applications of the operator a, we generate states
nf lower energy, a¢¥, = ¥,_;. This series must terminate, however,
since the hamiltonian (11.13) is a sum of squares of hermitian opera-
tors and therefore can have no negative eigenvalues. The ground
state of lowest energy is found by the requirement that a,¥, = 0.
The energy of the ground state is then

H\I’o = %woaan‘I’Q = %wg[ao,a:r)]‘l’o = %wo‘l’o
and the energy of the nth state

¥, = (ah)"¥, (11.19)
1s

Wy = (n + 1/2)(.00
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The energy spectrum is nondegenerate for the one-dimensional oscil-
lator, and the different states (11.19) are mutually orthogonal:!

(\I’m\I’m) = 5nm(n|) (‘I’O,\I’O) (11.20)

The matrix elements of a} in this representation are found by
considering

(| E U ) = @l = (aalalwdlt = n+ 1

wo
We may then take

(Wns1|a[¥a) = v/ F+ 1 = (¥, |a0|Tnsa) (11.21)
At an arbitrary time ¢, the matrix element of the Heisenberg operator is

(Tnga|at ()W) = €KWy 41|al| W)

= (et | ab|e=iontW,) (11.22)

I

In this special example only those matrix elements which change n
by An = +1 are nonzero. Equations (11.13) to (11.22) constitute
the complete quantum-mechanical solution. They describe the time
development of the operators, the possible physical states, and the
matrix elements of the operators in the energy representation.

It is straightforward to generalize the discussion thus far to a
system with n degrees of freedom. We introduce n hermitian opera-
tors qi(t), ¢ = 1, . . . , n in the Heisenberg picture and n conjugate
momenta p,(f). The dynamics is again given by the 2n classical
equations of motion.

_OH _ dp: 0H _ dg;

o~ d sy =d f=L....m (129

Specifying the matrix elements of p; and ¢; at an initial time, say ¢ = 0,
with the restriction that they fulfill the commutator conditions

[:(0),g;(0)] = —idy;
[:(0),p;(0)] = 0 (11.24)
[¢:(0),4;(0)] = 0

completely defines the quantum-dynamical problem. The quantum
form of (11.23) is, as in (11.12),

p:) = dH,p:(O)]  G(t) = d[H,q:(t)] (11.25)

1 Notice that the ¥, are not normalized.
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for each of the n independent coordinates and momenta describing a
system with n degrees of freedom.

11.3 Canonical Formalism and Quantization for Fields!

Taking the limit n — « brings us to a field theory with the field at
each point of space being considered an independent generalized coor-
dinate. A simple example of this limit in classical physics is the
weighted vibrating string. For a finite number N of beads along
the string we solve N coupled oscillator equations for the motion;
in the limit N — « we come to the limit of a continuous string
described by a displacement field ¢(x,{) which varies continuously
as a function of position x along the string and of time t. By its value,
¢ measures the amplitude of displacement of the string from rest at
(x,0); by its time derivative d¢(x,t)/dt, its velocity at (x,f).

Following this analogy, in terms of a canonical formalism we
expect o(x,f) to play the role of the coordinate ¢;(f) and d¢(x,t)/dt
to correspond to ¢;(tf). The discrete label ¢ is replaced by the con-
tinuous coordinate variable x, and in the Heisenberg picture the field
Is a function of both the space and time coordinates z = (x,t). It is
in this treatment of both space and time coordinates on the same
footing that we see the advantage of the Heisenberg representation
for explicitly maintaining the Lorentz covariance of the formalism.
The only vestige of a preferred role for the time coordinate lies in the
statement of initial conditions and of commutation relations at, say,
t = 0. The surface { = 0 is a noncovariant element in the theory.
Even this, however, may be removed by the covariant notion of a
space-like surface on which to specify initial conditions and commuta-
tors (Fig. 11.2). A space-like surface is a three-dimensional surface
¢ whose normal %, is everywhere time-like, that is, 7.2* =1 > 0.
By convention we shall always choose 7* in the future light cone,
that is, 7° > 0. In our future development, the words “at a given
time £’ and “on a space-like surface ¢’ are interchangeable; in this
way we may give our initial conditions a covariant statement.

The road to the quantization of a classical field theory starts
with the field equations. Knowing these, we seek a lagrangian which,
via Hamilton’s principle, reproduces them. Having the lagrangian,
it is then possible to identify canonical momenta and carry out the
quantization procedure in accord with (11.24). With this step the

1 W. Heisenberg and W. Pauli, Z. Physik, 56, 1 (1929); G. Wentzel “Quantum
Theory of Fields,”’” Interscience Publishers, Inc., New York, 1949.
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At Light cone Ixi=t¢
N\ e
AN s/
AN /s
\ 7/ General space-like surface
A 4
AN / 4
\ yd
A\ .
> X
// \\
4 N\

Fig. 11.2 General space-like surface ¢ with normal 7.

fields ¢i(x,t), and their canonical momenta ;(x,f), become operators
in a Hilbert space, operating upon state vectors & We postulate,
as in the one-particle quantum mechanics mentioned at the very
beginning of Chap. 1, that the physical states ® form a complete set
in the Hilbert space. Most frequently we shall encounter & in the
Heisenberg picture as eigenstates of the hamiltonian constructed from
the fields ¢; and momenta m; in analogy with the particle procedure:

H(Qaiﬂri) ®, = £,9,

We first recall the construction of a lagrangian L from equations
of motion in classical point mechanics. We can then imitate these
same steps to construct a lagrangian in field theory. Starting from
Newton’s law

. a
migi = — a—qu(ql, Cee )
we multiply by 8¢; and sum overi =1, . . ., n:
n n aV
mi§; 6q; = — 8q; = — oV
.'Zl w 121 9¢: !

Integrating next over the time interval #; to ¢, with fixed end points
of the particle trajectory, that is, 8¢:(¢;) = 6¢:(¢:) = 0, we find after
one partial integration

Atz dt (21 Maids — av) -0

This is just Hamilton’s principle with a lagrangian

L=%imaﬂf~—V
i=1
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We follow this exact same procedure in the case of a classical
field o(z) which we take for illustrative purposes to satisfy a free
Klein-Gordon wave equation

62
(&é — v me)¢ ~0 (11.26)

The summation over ¢; above is here replaced by a three-dimensional
integral over space coordinates x. First multiply the field equation
(11.26) by an infinitesimal variation in the amplitude of the field at z,

dp(x) = ¢'(z) — o(2)

and integrate over all coordinates x and over the time interval from

tlb0t2'
at2

Again the variations are restricted to vanish at the end points ¢, and ¢.:
do(t) = de(ts) = 0. We assume also that the system is localized
in space! so that there are no contributions from distant surfaces at
x— + «. This gives

t2 ® 1/0 1
e (%) - e ] o
5/;:2d4$£(g0,%‘)=0

A 1000 990 _ ,,
£ (“” 3x“) =3 (610“ 9z, M (11.27)
£ is a Lorentz-invariant functional of the fields and first derivatives ¢
and d¢/dz#; it is called the lagrangian density. The lagrangian L

which plays the same role as in the particle mechanics is seen to be
the volume integral of the density:

L= f d3x£(<p, jx“)

In a general theory, we shall always assume the field equations may
be derived from some lagrangian density £. In analogy with Hamil-
ton’s principle for particle mechanics (11.1), we ask that the action
be stationary for fields which are solutions of the actual equations

or

with

! We may also accomplish this by enclosing the system in a box with periodic
boundary conditions.
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of motion, that is,
5 Ahdtfd%,e =0 (11.28)

Upon carrying out the variation in (11.28) by varying the fields in
the integration interval but keeping the boundary values at ¢; and ¢,
fixed as in the particle mechanics case, we obtain the Euler-Lagrange
equations of the field development. Specifically, for a simple system
described by a single field ¢ and by a lagrangian density £ which is a
functional of ¢ and d¢/0x* only, (11.28) gives

t2 Ggo
[Fat [ dn [s <¢ + 8p, 22 Lt W) £ (¢, Ex—‘)]

= [t 3, | 0L 9L e\ | _
- ﬁ dt f d'z [a¢ b + G D) B(axu>] =0

Integrating by parts, and using the relation

do _ _
o dz+ é)x" (¢ + oo 6:0“ Bx“ (é¢)
gives

t2 4 g-g_i 0L _
, 4T 80 [a¢ az+ 3(d¢p/ dam) 0

For arbitrary variations 8¢, this leads to the field equation

% 3(9g/977) g 0 (11.29)
For the special choice of £ in (11.27), (11.29) is just the Klein-Gordon
equation (11.26).

Field equations derived in this way are generally local differential
equations. If £ contains higher than first-order derivatives of the
fields, the field equations will be of higher than second order.! As
long as £ contains only a finite order of derivatives of ¢(x), the fields
satisfy differential equations and the theory is “local.” In accepting
here this hypothesis of local action we recall the reservations discussed
in the introductory paragraphs of this chapter. It is likely that the
canonical development presented here applies only in the sense of a
correspondence principle for large distances if nature is nonlocal or
granular in the small.

1 We shall adhere in what follows to the requirement that £ shall be a functional
only of the fields and first derivatives. In addition, £ shall have no explicit
dependence on the space-time coordinates. This means that we consider “‘closed”
systems only, that is, systems which do not exchange energy and momentum with
applied external sources.
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In all cases the choice of lagrangians is dictated by the specific
field equations that are desired. Equation (11.27) was designed to
give the Klein-Gordon equation; other examples of interest to us are
the Dirac and Maxwell lagrangians. For systems described by more
than one independent field, say, ¢.(z), r =1, . . ., n, we obtain n
field equations

from Hamilton’s principle by independently varying each field, s¢.(x).

Turning now to the canonical formalism and quantization pro-
cedure, we use the lagrangian £ to define a canonical momentum as
in the particle mechanics. In order to exhibit explicitly the complete
parallel between the field and particle mechanics, we revert to a
system with a finite number of degrees of freedom by dividing the
three-dimensional space into cells of volume AV, and defining the
1th coordinate ¢:(f) by the average value of ¢(x) over the 7th cell

3
ei(t) = AV vy FE (X1

Denoting by @:(f) the average of d¢(x,t)/dt over the ith cell, we
rewrite the lagrangian as

L= [dze—) AViEBGO00 0w, .. ) (1131)

The different ¢; are all independent degrees of freedom; the values
of ¢;.s(f) in neighboring cells appear in £;, so that appropriate differ-
ences can be taken in forming the V. Since only the one time deriva-
tive ¢:(f) appears in each term E;, the canonical momenta are simply

oL AL,
pi(t) = a (t) = AV a (t) AV,;?T@(t) (1132)
The hamiltonian defined as in (11.4) is then
H=Y pé—L=) AV, (més — ) (11.33)

Returning now to continuum notation, we define the momentum
conjugate to o(x,t) by

r(x,t) = ?3?;:((?;2 (11.34)

Its cell average gives mi(f) in (11.32). The hamiltonian is written
as a volume integral over a hamiltonian density 3¢(m,¢) defined as
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suggested by (11.33)
H = [ d% 3e(xr(x,1),0(x,1)) =70 —L (11.35)

Having identified the canonical momenta, we now follow the
quantization procedure of replacing dynamical variables o;(t), p:(f)
by hermitian operators which satisfy commutation relations analogous
to (11.24):
le:(®),0:(D] = [p:(®),p;()] = 0
[pi(®),0;(D)] = —18;;

or in terms of m.(t)

’iﬁij

AV;

These become in continuum language

le(x),ex',)] =0
[rxD @, D] = 0 (11.36)
[1r(x,t),<p(x’,t)] = —ias(x - X,)

where the Dirac delta function emerges as the limit of &;/AV,, as
AV;— 0, according to its definition

[ & 83(x — X)) = f(x)

Equations (11.34) to (11.36), in addition to the equations of motion,
provide the basis of canonical quantum field theory. In order to
generalize this development to physical systems described with
several independent fields ¢,(x,t), we introduce momenta conjugate
to each field by

[ri(D),0(D] = ~

oL
r,(x,t) = Wt—) (1137)
and the hamiltonian density by
Blre ==y er 2) = ) mer— L (11.38)
r=1
For the quantization conditions we introduce the commutators
ler(x,8),05(x",0)] = 0
[m(x,1),ms(x",)] = 0 (11.39)

[rr(x,8),0:(X',8)] = —15,:0%(x — x)

Finally, to complete this purely imitative transcription of the
particle mechanics to establish a quantum field formalism, we find
from (11.37) to (11.39) that (11.25) transcribes to

T'(x,t) = i[Hy"rT(x;t)] Qor(x)t) = i[H,ga,-(X,t)] (11.40)
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11.4 Symmetries and Conservation Laws

The lagrangian formulation provides a convenient and systematic
way of identifying and extracting constants of the motion in classical
field theory. One can show that, starting from a scalar lagrangian,
there is a conservation theorem and a constant of the motion corre-
sponding to each continuous symmetry transformation which leaves
the lagrangian density £ and the equations of motion invariant in
form. Such a theorem® (known as Noether’s theorem), which permits
observed selection rules in nature to be described directly in terms
of symmetry requirements in £, is useful as a guide for the introduction
of interaction terms in developing new theories. We are therefore
interested in its application to quantized field theories.

We first discuss the conservation laws which result from trans-
lational invariance in a classical field theory. Under an infinitesimal
displacement

T, =T, + ¢ (11.41)

the lagrangian £ changes by the amount

e =g — ¢ = eﬂj—f (11.42)
I

On the other hand, if £ is translationally invariant, it has no explicit
coordinate dependence and we write £ = £(¢r, d¢,/0x,) s0 that

. aL 0L Ao,
68 = z [ 5o 0 T 38 ° (5;“)] (11.43)

where

dor = oo + €) — @:(2) = ¢, 9—%? (11.44)

Equating these two expressions and using the Euler-Lagrange equations

3, ~ 32 3(@e o)~ © (11.45)
gives
L _ i) 9L a‘Pr
" o, axﬂ[ 0 8(3¢r/0,) a] (11.46)
Since this holds for arbitrary displacements e, we can write
d
oz, 0w = 0 (11.47)

18e¢e E. L. Hiil, Rev. Mod. Phys., 28, 253 (1957), for a detailed discussion of
this theorem.
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with the energy-momentum stress tensor 3,, defined by

(11.48)

- _ 9L der
Jo = —gud + Za(aqo,/ax,.) a

From this differential conservation law one finds the conserved

quantities
¢,
P, = [ d*z 5o, = / dix [z o — g,,,,e] (11.49)
oP,
at 0

We have already seen in (11.37) and (11.38) that Jg, is the hamiltonian
density

S0 = ) mir — £ = 3 (11.50)
and fd3$ Joo = H

so that we may identify P, as the conserved energy-momentum four-
vector.

In the same manner we may construct the angular-momentum
constants of the motion by considering an infinitesimal Lorentz
transformation.

T,=, + 6t e = —ey, (11.51)
The practical test of Lorentz invariance is to make the replacement!
or(z) = 81 () es(x) (11.52)

in the equations of motion and to determine whether they then take
the same form in the primed coordinate system as they did in the
unprimed system. Here S,(¢) is a transformation matrix for the
fields ¢, under the infinitesimal Lorentz transformation (11.51) and
differs from the unit matrix if the field is not a scalar field. We have
already seen an example of this for the Dirac equation, where we
recall from (2.17) that?

S"(G) = by + 1/8[7",7’]7'&5“;:

We now take over the test (11.52) into the lagrangian theory and
demand that the lagrangian density be a Lorentz scalar and therefore
! Henceforth repeated indices r and s for field components are understood to

be summed.
2 For the Dirac theory, see (2.11).
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remain form invariant under the replacement (11.52), that is

do.(2')
oz ) (11.53)

7 a ’ 4
e (S#%(x ) o Sitele >) e (@(x )

This will guarantee the form invariance of the equations of motion,
which are derived from £ by an invariant action principle. We write
for an infinitesimal transformation

SQD,(SC) = Sr—cl(e)‘Ps(xl) - ‘Pr(x) = ﬁar(x’) - Sor(x) - %przf:¢s(x)

with the definition
Ss(€) = 6, + 1526, (11.54)

Expanding (11.53) about x we find, using the Euler-Lagrange equa-
tions (11.45)
e a [ oL

£(@') — £(x) = ¢’r, — = FICPErD] 5901] (11.55)

dz*  9z*
Equations (11.54) and (11.55) lead to the conservation law

] ol AL d ]
. PN — Ny — vl Vo e N
3 " oz* '(x 9 = 29N+ 550 e {(z am " ax,) e
+ z:g“Psl:I
— _i [ VBN . N uv a"e 2N —
=30 _(x 4t ) + ————a(a%/ax”) E,,,gos] =0 (11.56)

The conserved angular momentum is
M» = [d3z MO = [d3x[(z3™ — 23%) 4 720 (11.57)

aMrX _

at 0

Proceeding in the same spirit, one obtains additional conservation
laws if the lagrangian possesses ‘“‘internal symmetries,” that is, if
under local transformations

0:(z) = 0r(x) — TeNrsps(T) (11.58)

the lagrangian density remains invariant. In (11.58) the A\, are con-
stant coefficients independent of z* and ¢ is an infinitesimal parameter.
The diagonal components of the matrix A correspond to simple phase
changes of the fields, while the others mix the different field amplitudes
which appear symmetrically in £. If £ is invariant under the sub-
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stitution (11.58), we find by repeating the steps (11.42) to (11.46)

P 98 ;9
0 =188 =5, % T 3G 5 ° 5
. d 0L
= —1€ a—x“ [W )\ra“Ps] (1159)

Thus for each “internal symmetry’”’ operation (11.58) which leaves
£ invariant there is a differentially conserved current

aJr(x,\)
o = 0 (11.60)
with T = i 0T\ (11.61)
’ a(asar/ax*‘) rsPs .
along with a conserved ‘‘charge”
QM) = —ifdzrine 2N g (11.62)

ot

Going over now to quantum field theory, we must ask whether
we may still apply the classical result that a scalar £ guarantees
Lorentz invariance of the theory and provides, via the Noether
theorem, the energy-momentum and angular-momentum constants
of the motion. In the quantum theory the field amplitudes ¢.(z)
become operators upon state functions, or vectors, in a Hilbert space.
If we impose the requirements of Lorentz covariance on the matriz
elements of these operators, which represent physical observables as
viewed in two different Lorentz frames, we come to certain operator
restrictions on the ¢.(z). For a quantum field theory a scalar £ is
not, sufficient to guarantee relativistic invariance, but we must also
verify that the fields obey these operator requirements.

To show how these requirements arise, we take as a physical
observable the matrix elements of the field operator ¢.(z) between
two state functions

(q)a:(!’r(x)@ﬁ) (1163)

For arbitrary states, labeled by « and g, this complete set of ampli-
tudes in quantum field theory replaces the classical field amplitudes
¢-(z). The analogous role in the Schrédinger quantum mechanics
is played by the matrix elements of the coordinate ¢({). To an observer
in another Lorentz frame, related by a coordinate transformation

o = arxr + b
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the amplitudes (11.63) are
(®ypr(2')Bp) (11.64)

as expressed in terms of the state vectors ®, and &; representing the
same physical states « and B to the observer in the primed system
and in terms of the field operators ¢.(z') at the transformed point .
The amplitudes (11.64) are the quantum theory correspondence of
the classical fields ¢.(2') = S,s(x) in the primed system. This
classical transformation law is now expressed by

(Plypr (&) D) = Sro(@) (Bayps (%) Pp) (11.65)

and provides the mathematical law of communication between the
two Lorentz observers. We require then that there exist a unitary
operator U(a,b) which accomplishes the desired transformation of the
state vectors between the two Lorentz frames so that by the equation

&, = U(a,b)®, (11.66)

we can relate the corresponding states. The field operators then
transform according to

U(a,b)er(z)U(a,b)t = S (a)eu(ax + b) (11.67)

as follows from (11.65).
Considering first displacements, in particular, we have

U®)e:(2)U®) = ¢rlx +b) (11.68)

where U(b) is the unitary operator generating the coordinate dis-
placements. For infinitesimal displacements z# = 2# 4+ ¢, we may

write
U(e) = exp (t,P*) = 1 + 4¢P (11.69)
where P, is a hermitian operator. Equation (11.68) now reduces to
TP pr(a)] = 222 (11.70)
9z,

Correspondence with classical canonical mechanics and nonrelativistic
Schrodinger theory [Eq. (11.10)] suggests the identification of P* in
(11.69) and (11.70) with the energy-momentum four-vector P* = P*
Since we have derived an explicit form (11.49) for P# we can explicitly
check in any theory whether this identification follows from the com-
mutation relations imposed in the quantization procedure. Thus we
can compute directly from the commutators whether (11.69) remains
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an operator identity and whether the components of P commute with
H, that is
[HP] =0 (11.71)

so that P remains a constant of the motion.

If (11.70) and (11.71) are consistent with the commutation rela-
tions, the quantum theory is displacement invariant; if not, either a
P, satisfying (11.70) and (11.71) must be found by some other means,
the commutator condition modified, or the theory abandoned. For
the theories we consider, the P, and M, found by Noether’s procedure
will be found to be satisfactory.

In a similar way we construct the analogous statement for invar-
iance of the quantum field theory under Lorentz transformations.
The unitary operator which generates the infinitesimal Lorentz trans-
formation z*' = a* 4 e*,2” is written

U@J=l—§%u" (11.72)

where M*” is a hermitian operator which satisfies an operator equation
according to (11.67):

o(®) = 5 ewlM0(@)] = S e)eul + )
With the help of (11.54) this reduces to

M0 @)] = o 52 — 2 S 4 Bree)  (LT9)

Again we rely on correspondence with classical and with nonrela-
tivistic theory to identify M#*, which generates the Lorentz transfor-
mation, with the angular-momentum tensor (11.57): M#»» = M#. The
space components of (11.73) are nothing else than the familiar com-
mutation relations in nonrelativistic quantum mechanics of the angular-
momentum operator L = (M 12,0423 M3') which generates the three-
dimensional spatial rotations. The consistency with the commutation
relations of this identification of the angular-momentum tensor M+
with M# is the additional requirement here for invariance under
Lorentz transformations. It can be explicitly checked as in the dis-
cussion of Px,

For most field theories now generally discussed in physics the
lagrangian approach and Noether’s theorem can be carried over directly
to the quantum domain without difficulty. It is from this that they
derive their practical usefulness, as will be illustrated in succeeding
chapters.
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11.5 Other Formulations

The approach given above uses the classical lagrangian as a “crutch”
in order to derive consistent field equations and commutation relations.
We emphasize that the physics lies in the field equations and their
solutions, the commutation relations, and the properties of the states
of the system.

It is possible also to formulate the theory ab initio in terms of a
quantum action principle; in such theories the lagrangian plays a more
central role. This powerful, but more abstract, approach to local field
theory has been discussed extensively in the literature, especially by
Schwinger.!

Conversely, it is possible to formulate the theory without the men-
tion of lagrangians. A general approach from an axiomatic viewpoint
has been given by Lehmann, Symanzik, and Zimmermann.?

Problems

The wave equation for a massive spin-1 particle is

[00@ + ) = 3 52 ] ert2) = 0

from which follows:
dp”

— = ()

ax”

1. From this equation construct the lagrangian density

£=-3 (61:") aw) +5 o’ + 3 (az”)

2. Construct the hamiltonian density

2 2 1

1 M u
= —gmrt —3 (VW)'VP“ -3 o

where
L
dph
1], Schwinger, Phys. Rev., 91, 713 (1953), and R. E. Peierls, Proc. Roy. Soc.
(London), A214, 143 (1952).

2 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento, 1, 1425
(1955), 6, 319 (1957).

T =
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and
mo =V -+ = Vip!
o= ¢t

3. Check that the Hamilton equations of motion

ok _ . o _
dm FY

with the subsidiary condition
mo=V-$ = —¢
reproduce the original wave equation.

4. Supposing that £ is not invariant under some internal symmetry operation such
as (11.58), relate the change in £ to the divergence of the associated current.
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12.1 Quantization and Particle Interpretation

\

A real scalar field ¢(x) which satisfies a free Klein-Gordon equation
(O + mY)p(@) =0 (12.1)

is the simplest of all fields and has already been used for purposes of
illustration. The lagrangian density leading to (12.1) is

1/d¢ 8
£ =3 (a—“’ 7 _ m2¢2) (12.2)

T===¢ (12.3)

With the canonical quantization procedure, = and ¢ become hermitian
operators satisfying equal-time commutators

le(x,),0(x',1)] = [7(x,8),7(x",1)] = 0
[W(x:t))¢(x,:t)] = —"1:63(}{ - xl)

The resulting quantum field theory is invariant under displace-
ments and Lorentz transformations of the coordinates, as we verify
by direct calculation of the commutators (11.70) and (11.73). The
hamiltonian following from (12.2) and (12.3) is

(12.4)

PO = H = [ d% %(mep)

Klrg) = 16 — £ = 5 [r(xD)? + VoD + mio(x)7]

(12.5)

and the momentum operator is
P=—[rVodix (12.6)

Using the commutation relations (12.4), we find

ilPrp(x,)] = 2650
as required. In an analogous way we compute M** by (11.57) and
confirm the relation (11.73), with =% = 0 for a scalar field.

In order to discuss further the properties of the quantized Klein-
Gordon field, we want to construct a complete set of state vectors ®
from the algebra of the operators assigned by the commutators. It is
convenient to do this by forming the eigenvectors of momentum and
energy.

26
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To this end we observe that an arbitrary solution of (12.1) may be
expanded as & Fourier integral over elementary plane-wave solutions:

o) = [ o a4 al(Ryeieatin
= / d%k [a(k)fe(z) + a*(k)f¥ ()] (12.7)
with
T me = 1 itz
=-|-'\/’C +m and fk(x)—\/(—z,_r)__%e"‘

Classically for a real field ¢(z), a'(k) is the amplitude complex conjugate
to a(k). In quantum field theory the amplitudes become operators
with a'(k) hermitian conjugate to a(k). The algebra of a(k) and af(k)
is determined by rewriting the commutator requirements (12.4) on the
¢ field in terms of the a(k) coefficients.

Inverting the expansion (12.7) and solving for the coefficients, we
find!

/ ) e(x,t) d*z = 2%" [a(k) + at(—Fk)ezias]

[ fr06t) dia = Sl lalk) — al(—R)ere]  (12.8)
This gives
a(k)

[ f ot + i)

o[- () o]

i / 43 FX(x,8) o (x, 1) (12.9)

where the notation 9, is defined by the last line
e ab da
a()3cb(t) = a(t) 5 — <57) b(t)
The right-hand side of (12.9) is independent of time, by Green’s the-

orem, since fx(x,t) and ¢(x,t) are both solutions? of (12.1). This form is

1f, and f; satisfy the orthogonality conditions of (9.6):

Jfi(x,0) gofk'(x,t) dz = 8%k — k')
JT(x,t) E;ofk’(l’,t) dz =0

2 This is true more generally if we superpose plane waves (12.7) to form wave
packets in making the expansion of ¢(x,t) in terms of orthogonal functions. See
H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento, 1, 1425 (1955).
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reminiscent of the inner product encountered in the propagator discus-
sion of the Klein-Gordon equation in Chap. 9.

The commutation relations now follow from (12.4) and (12.9).
Since a(k) is time-independent, we may choose a common time to
evaluate, with the aid of (12.3) and (12.4), the commutator

[a(),a' ()] = [ d% d¥ (5 (6t) o (x,0), fo (3, B0 (3,0)]
Hif @ £ (x)0uf (%,f) = 8k — K')

Similarly,
la(k),a(k")] = ()*f d*c d*y [f¥ (x,t):;;so(X,t),fz?(y,t)gztp(y,t)]
= —if &’ fF(x,1)fi(x,) = 0
and

[at(k),af (k)] = O (12.10)

The total energy and momentum for the free Klein-Gordon field
take simple forms in terms of these expansion coefficients. A straight-
forward calculation using (12.5) to (12.7) gives!

H = ¥4f d*% wia'(k)a(k) + a(k)a' (k)]
P = 15[ d%k ko' (k)a(k) + a(k)a' (k)]

At this stage we see that the hamiltonian is a continuous sum of
terms

(12.11)

Hy = Yswla'(k)a(k) + a(k)a’ (k)]

11n the interest of formal covariance, we may rewrite the plane-wave expan-
sions in an invariant notation, using the identity

5211’3 - f dtk 8(k? — m2)0(ko)
Wk
With the notation A(k) = /2 a(k), we find

o(xl) = ﬁ / dik 5(k? — m2)a(ko)[A(k)e—*= + At(k)e=]

and
. >
A(k) = e / A3 nues-= 9 o(z)
(2m)% “ oz
with o a flat space-like surface and 7, its normal. Likewise,

Pr = 14 [ dk (k2 — m®)0(ko)kr[AY(k)A(k) + A(k)AY(E))

The A(k), like ¢, are Lorentz scalars.
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each of which has the form of a hamiltonian for a simple harmonic
oscillator of frequency w;. Indeed, the a'(k) and a(k) are simply the
raising and lowering operators discussed in the example of a particle
oscillator in Chap. 11 and satisfy the same commutation relations, aside
from the normalization convention. In order to clarify the procedure
with regard to normalization and to show the complete equivalence
with our earlier quantum description of a simple one-dimensional oscil-
lating particle, we again revert to a discrete notation. Dividing up
k space into cells of volume AV}, we write

Bkk'
dk— ) AV, and 83k —k)— = (12.12)
/ Z AV,

H then becomes a sum of oscillator hamiltonians H; for each cell in
momentum space:

H=Y H =) Yoo + aa) a=+vAVia®) (1213)
% %
with la,0l] = Sur [ax,0x] = [af,al] = 0 (12.14)

This analogy with the harmonic oscillator should not be surprising,
since the classical Klein-Gordon wave field can be described by its
normal-mode expansion. The normal modes and coordinates are just
simple harmonic oscillators. What we have done here is simply to
quantize each of these oscillators, a(k).

Upon quantization we expect that the classical field energy will
become a sum over discrete oscillator energies. To determine the
energy eigenvalues and construct the energy eigenfunctions, consider
each oscillator hamiltonian H; individually. Since H is a sum of
mutually commuting terms H; for each wave number k and frequency
wr = V/k? + m?, the energy eigenfunctions will be products of eigen-
functions &y of each Hy. General state vectors ® can be built of super-
positions of such products over all k values, according to the complete-
ness postulate of Chap. 1 transcribed to the field hamiltonian.

The solution to the oscillator eigenvalue problem for each k may
be characterized by an integer n, = 0, 1,2, . . . in terms of which the
energy eigenfunctions and eigenvalues are (in the discrete notation)

Hi®i(nr) = on(ne + 15)®e(n) (12.15)

i) = 71n=, (a})"54(0) (12.16)
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&;(0) is the ground state, defined here by
a;®:(0) =0 (12.17)
and the states are normalized to
(@e(n),Be(my)) = By
The momentum operator may be similarly decomposed
P =Y P =Y Kk(ao, + a.af) (12.18)
with Pudi(ny) = k(n: + Vz)ql:k(n,,) m=012 ...

The energy-momentum eigenfunctions ® are products of the & for
each momentum cell, and they are characterized by integers n; for
each k:

B(ny, + ¢ My ) = ] @)
k

(12.19)
Prd(- - myy - - ) = Zk"(nk + 1B - - My - - 7)
k

The ground state, that is, the state of lowest energy, is that for which
all ny, = 0:

& = [] 2:(0) (12.20)
k

None of the normal modes of the field are excited in this state, which
physically represents the vacuum.
The energy of the vacuum is

E = ; L4 (12.21)

and is badly divergent, being the sum of zero-point energies for an
infinite number of oscillators, one for each normal mode, or degree of
freedom, of the field. This is the first of a number of divergences we
shall encounter in field theory. It is the easiest one to remove, simply

by subtracting an infinite constant from H to cancel Z 14w, Thiscan
k

be done because absolute energies are not measured observables; only
energy differences have physical meaning. According to (12.17) and
(12.20) this infinite constant is just the vacuum expectation value of
the energy and is automatically removed by rewriting the energy-
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momentum operator as
P, = P, — (&,P,®) = ), kala (12.22)
k
or in continuum language

P, = [ d% k,a' (k)a(k) (12.23)

At any time before the commutator conditions are imposed on the fields,
P, and P, are identical, since classically the normal-mode amplitudes
commute and there is no zero-point energy.

Replacing P, by P, in the quantum theory is identical to rewriting
the operator factors in L and P, so that the positive-frequency parts
of ¢

e (z) = [ d°k a(k) fu(z) (12.240)
always stand to the right of the negative-frequency parts
e () = [ d%k o' (k) fi (2) (12.24b)
This ordering of factors, known as normal ordering, is denoted by
(o0 = e 20 4 oD (12.25)

It is clear from (12.17) and its hermitian conjugate that the vacuum
expectation value of an operator vanishes when its factors are in normal
order. The only effect of normal ordering here is to remove the infinite
zero-point energy from the theory and to define the zero of energy as
the energy of the vacuum state ®,.

From (12.19) and (12.22) we find for the eigenvalues of P,:

Pd( My + - *) = Enkk,@(‘ et ) =012 .
%
(12.26)

The different eigenstates for each normal mode k carry four-momenta
corresponding to n; quanta, each with four-momentum k* and mass m
according to the Einstein relation kk* = m2. Here we see the emer-
gence of a particle picture from the canonical quantization procedure.
The integer ny is called the occupation number of the kth momentum
state, and specification of the numbers of quanta Nk, gives a complete
description of the eigenstate ®(- + * ng, * * ).
It is convenient to introduce a number operator

Ni = dlax (12.27)
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with integer eigenvalues

Nﬂ,(...nk...)=nkq>(....nk...) nk=0,1,2,...
(12.28)
and in terms of which the energy-momentum operator is!

Pe = Y kN, (12.29)
k

From the commutators (12.14), we verify that
[N k,a,"’] = Bk,,fa{' and [N ;,,a;,'] = —51,1,'(11,' (1230)

Combined with (12.29), this shows that af is a creation operator for a
quantum of momentum k* and that it produces a state with n; 4+ 1
quanta of this momentum from a state with n; such quanta:

Pal®( + - me v+ ) =al[Pu+ EJBC - - ma - - )
= Gk, + kel e om0 )

Similarly, a; destroys a quantum with k* and, in particular, operating
on a state containing zero such quanta destroys the state, ax®:(0) = 0,
according to (12.17).

The only nonvanishing matrix elements of the operators a; and a}
connect states with occupation numbers n, = nx + 1, as we recall from
the oscillator example in Chap. 11:

(@x(ng),0xBi(n)) = (nglaelne) = /7 Snyrinpm

Y (12.31)
(nl,c|altc|nk> = '\/nk + 1 6ng',n;,+l

Symmetry of the States

The canonical quantization procedure applied to the classical free
Klein-Gordon field has yielded a many-particle description in terms of
numbers of quanta. For the free field, N, and H commute and the
number of quanta is a constant of the motion. The interesting physi-
cal problems are encountered when we add interaction terms changing
the occupation numbers n;. In the present free-field discussion there
remains the problem of showing that the quanta obey symmetric, or
Bose-Einstein, statistics.

1 Henceforth, we drop the primes when normal-ordering operators, for
example, P,.
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An arbitrary state is constructed by superposing the

q’("'nka"')=n 1
k

tyn
Vo (ax)™@(0) (12.32)
for different occupation numbers n;. The state (12.32) is described
completely by the numbers of quanta n: for each k. The individual
quanta are indistinguishable, since all of mutually commute, according
to (12.14), and the ordering of operators a} is immaterial. This is
reflected in the symmetry of the expansion coefficients for the different

states. For an arbitrary state we write, reverting back to continuum
normalization,!

& = [co+ i 7%/ Ay - - d¥n cn(kyy . - o k)
n=1 :

X at(kDat(ks) - - - atlkn) | &0 (12.33)

The factors 1/4/7n! are inserted for convenience to give a simple form
to the normalization condition on the c,:

1= @) =l + ) [ d% - - - doka fealknbs, . . . Eo)?
n=1
(12.34)

The c¢,’s describe the momentum distribution of that component of the
state containing n quanta. They are the momentum-space wave
functions for an assembly of n identical particles with a given set of
ke. Owing to the commutativity of the a'(k) among each other in
(12.33), these wave functions are symmetric functions of their
arguments

e kit ki )y=HcC kg kiv ) (12.35)

As noted above, it is only the numbers of quanta with the various %
values that characterize a state. The quanta are indistinguishable and
the probability of quantum ¢ having momentum k; and quantum b
having k; is the same as that for a and b interchanged:

leG + kv v ok )E=le- - K ki )2 (12.36)

1 We assume here that the probability of two particles being in precisely the
same state k is infinitesimally small, so that in the continuum limit nx— 1 or 0.
In highly degenerate systems, such as the ground state of a free Bose gas, where all
quanta are in the state k = 0, it is easiest to remain in the discrete normalization.
For relativistic fields, the states of interest are generally scattering states, where
this question does not arise.
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The symmetry condition (12.35), which is a consequence of the commu-
tation algebra of the a'(k), shows that the quanta emerging from the
canonical quantization prescription obey symmetric, or Bose-Einstein,
statistics.

12.3 Measurability of the Field and Microscopic Causality

Classically, the field ¢(z) is an observable and its strength at a point z
can be measured. With the reservations discussed in the introduction
to field quantization in Chap. 11, we have introduced the concept of a
local field operator ¢(x) defined at a point z in the quantum domain.

In the quantum theory, in contrast with the classical theory, there
are limitations on our ability to make precise measurements of the
field strengths, owing to the commutation relations. For example, a
precise measurement of field strengths at two different space-time
points z and y is possible only if the commutator [¢(x),o(y)] vanishes.

Having constructed the explicit solutions of the free Klein-
Gordon field in (12.7), we can evaluate the field commutator with the
aid of (12.10):

= _Ml___ t( 1.7\ p—ik-z+ik’ oy
le(),e ()] RO e (la(k),at(k")]e
+ [at(k),a(k")]et=i"v)
3
= (_21%3102_&,‘ (e—ik~(x—v) —_ eik~(z—v))
- (ZLW)a/ %c XN sin wi(zo — o)
= iA@z — y) (12.37)

A(z — y) is one of a menagerie of invariant singular functions which
are collected and discussed in Appendix C. Its Lorentz invariance is
apparent in (12.37), where an invariant exponential is integrated over
the invariant volume element

o _
Quwr

/ d*k 5(k? — m2)6(ko)

Introducing the odd function

e(ko) = { i’} Z: Zg (12.38)
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which is invariant for time-like vectors k2 > 0, we can put A in a more
compact form

Alx —y) = —1 @ )36(k2 m2)e(ko)e~* v (12.39)

As required by its definition in terms of the commutator on the left-
hand side of (12.37), A is a solution of the free Klein-Gordon equation
and is an odd function of its argument

(e +m)A@x —y) =0 A —y) = —A(y — 2) (12.40)

It follows from (12.37), as well as (12.4), that the equal-time commu-
tator of two field amplitudes vanishes: A(x —y, 0) = 0. From
Lorentz invariance we know then that

Alx —y) =0 forall (zx — y)2 <0 (12.41)

and two fields separated by a space-like interval commute with each
other. Therefore, at two points which cannot be connected by a light
signal or by any physical disturbance, that is, (x — ¥)2? < 0, the field
strengths ¢, if interpreted as physical observables, can be measured
precisely and independently of each other. The time derivative of A
is singular at the origin

AA(x — y)

e me=ye = TFE—Y) (12.42)

and (12.42) combined with (12.37) reproduces the canonical commu-
tators, (12.4).

The condition of vanishing of the commutators for all space-like
intervals, (12.41), no matter how small, is referred to as the condition
of microscopic causality. In order to associate any physical content
with this mathematical result, we must assume that it makes sense to
attach physical meaning to the measurement of a field strength at a
point, a concept already criticized in earlier paragraphs.!

12.4 Vacuum Fluctuations

We have already noted that the field quantization is essentially the
quantization of an infinite assemblage of harmonic oscillators; the

1For quantum electrodynamics N. Bohr and L. Rosenfeld, Kgl. Danske
Videnskab. Selskab. Mat.-Fys. Medd., 12, 8 (1933), Phys. Rev., 78, 794 (1950), have
made a detailed analysis of the physical meaning of the commutation relations in
terms of physical measurement processes.
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vacuum energy was seen to be analogous to the zero-point energy of
these oscillators. In an energy eigenstate of an oscillator the coordi-
nate ¢ is not sharp, that is,

(Y0, q?¥n) > (¥,,q¥n)? = 0 (12.43)
This is also true in field theory; the coordinates ¢ (x) fluctuate. For

example, in the ground state

Av(z,y) = Ole(@)e(y)|0) # 0 (12.44)
although

O]e(2)[0) = 0 - (1245)

We may evaluate A;(z,y) by using (12.7), (12.10), and (12.17); we
find

a3k d°k’ o
A = —_— g tkzg®y(0|a(k + k' 0
+(z,y) ERTPY i (Ola(k)at (k") |0)
= 8 ey — _
- .[(ko=+wk) (21r)32wk € v= A+(x y)

As y — z, this approaches a quadratically diverging expression for the
vacuum fluctuations

dk

(0l¢%(2)[0) = A4(0) =

R (12.46)

Unlike the zero-point energy encountered earlier, this divergence can-
not be completely eliminated by a simple subtraction. In fact, we
have already seen that the vacuum fluctuations lead to observable,
finite physical effects in the Lamb shift, which was discussed from this
point of view in Chap. 4.

We may make this troublesome result—the divergence of (12.46)—
less unpleasant with the observation that one cannot in fact measure
the square of a field amplitude af @ point. In order to probe a single
isolated point of space-time, one needs infinitely large frequencies and
infinitesimally short wavelengths—and these are not to be achieved at
less than infinite energies. Also, in practical calculations the fact that
(12.46) diverges will cause no serious difficulties. However, it is
disturbing to find our formalism full of expressions such as £ and P*
which, like (12.46), involve products of field operators evaluated at
the same space-time point. It should be kept in mind that only
products of fields averaged over finite regions of space-time may exist
mathematically and have physically observable meaning. We
interpret results like (12.46) as indicative of the limitations of a con-
tinuous-field description—it is an idealization which provides an
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adequate description of the physical world only in the sense of the
correspondence principle for large space-time intervals. It remains
for experiment to show how small are the space-time lengths before
quantitative revisions in the theories are required.

12.5 The Charged Scalar Field!

Having discussed the quantum theory of one real free Klein-Gordon
field, we may adapt the results to describe the charged particle dis-
cussed in Chap. 9. Such a particle was described in terms of a com-
plex wave function

1

o(x) = V3 [e1(2) + iea(2)]

with ¢; and ¢, real. We first consider then two identical noninter-
acting real fields of this type. The field equations

(e + mYen(@) =0 (0= + m?ea(z) =0 (12.47)

follow from the lagrangian density

= 15.(901 0801 _ 52y 02002 o, LY.
.G—-%.(ax“ Ey m¢1+ax“ Fyr mep; ): (12.48)

where :- - -: denotes the normal product as defined by (12.24) and
(12.25). The canonical momenta are found as before

™ = gbl T2 = qbz (12.49)
and the canonical commutation relations are
[ox(2),¢i(®)] = ©0uA(x — y) (12.50)

Since the hamiltonian is the sum of two terms of the form in (12.23),
the energy eigenstates are a direct product of the independent eigen-
states of the hamiltonians for quanta of types 1 and 2. The numbers
of particles of types 1 and 2 are separately conserved in the absence of
interaction terms, and it is again convenient to label the states by the
eigenvalues of the number operators:

Ni(k) = ai(®)ay(k)  Na(k) = aj(k)as(k) (12.51)

As in (12.30) and (12.31), a!(k) and a;(k) create and destroy quanta of
type ¢+ and momentum Kk, respectively, and therefore connect states
differing by +1 for these occupation numbers.

1W. Pauli and V. F. Weisskopf, Helv. Phys. Acta, T, 709 (1934).
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All of the remarks of the first paragraph apply for arbitrary
masses m; and m, appearing in the field equations (12.47). As a
special consequence of the identity of the two masses m; = my = m,
we may replace these two equations by one wave equation for a com-
plex field

o= v4m+m) w=$§m—M) (12.52)

¢ and ¢* satisfy the Klein-Gordon equation

O+mhe=0 O+ m?)e* =0 (12.53)
and in terms of the complex coordinates ¢ and ¢*, £ becomes
D" 8e k.
e g — TP (12.54)

The canonical momenta for these coordinates are

0L _ ., _ $1— 1 oL . ¢1+F 1o
rT=—= — a,nd * = —_— = = —
3 ¢ V2 T YT T3

The hamiltonian density is then

I =mp + w*¢* — £ =x*r + (Vo*) - (Vo) + mio*e (12.55)
and the commutation relations are
le@),e@)] = 0 = [*@),e*®)]  [e(@),e*®)] = A(z — y) (12.56)
They reduce at equal times to the nonvanishing canonical commutators

[r(x,0),0(x' )] = [x*(x,),*(x',1)] = —16%(x — x')

Fourier-transforming the solutions to & space, we write, following
12.7),

lar(k)e=*= + al (k)ei-<]

o(z) = /vwvz
[a} (k)e*= + a_(k)e~*2] (12.57)

vhia) = /Vka

with

a4(k) = \/2 la1(k) + das(B)]  al(k) = —= [al(k) — dal(k)]

\/ (12.58)

a-(k) = iax(k)]  al(k) = \/2 [a(k) + tal(k)]

\/2 [al(k)
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Equations (12.7) and (12.57) differ in that ¢(x) is a complex field and
hence upon quantization becomes a non-hermitian operator; by
(12.58), al (k) 5 al (k).

The commutator relations for the a,(k) are readily constructed
in parallel with (12.10):

[a+(k),al (k)] = la—(k),aL(¥)] = 8%(k — k)
[a+(k),aL (k)] = [a_(k),a}. (k)] = 0 (12.59)
[0 (R),a5 (k)] = [al(k),al(¥)] = 0

Evidently the a.(k) and the ai(k), a:(k) satisfy the identical algebra,
and the number operators formed from them have the same form and
the same integer eigenvalues. Returning to the convention of a
discrete normalization to define the number operators for the + and
— quanta, we write

Nt = al a4 Ny =al 0 (12.60)

in terms of which
P, = ) k(N + Ny) (12.61)

There is a complete parallel here with the earlier discussion of one
field; for example,

N;’[a+‘k¢(. .. n;:' . SRR nk_ .. .)]
=aaNF = 1D)®C - -nf - -0, mg )
= ('n;:' p— l)[a’+,kq)(. . . n;:’ e . , . nk_ P .)]

and the state of lowest energy, the vacuum, contains no quanta of
either type, so that

a54®0 = 0 (12.62)

The operators a.  are destruction operators for the + and — quanta
of momentum ¥, respectively, and the a"i,k are the corresponding
creation operators. In the normal-ordered form the destruction
operators stand to the right of the creation operators as in (12.61).

At this point it clearly does not matter at all whether we describe
the fields in terms of their hermitian amplitudes ¢; and ¢, or in terms
of their complex ones, ¢, ¢*. The states may be labeled equally well
by numbers of quanta of types 1 and 2, or + and —.

The wave equation (12.53), for a complex field ¢, reminds us that
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we were able to identify a conserved current

3 = i(e*Vrp — ¢VEe¥)

. g+
with Fyi
and Q = if d% (¢*¢ — ¢¢*) = const (12.63)

when discussing the Klein-Gordon equation in Chap. 9. We may
readily confirm that @ remains a constant of the motion in the present
quantum theory following from (12.54) by expanding (12.63) in k
space and showing that it commutes with H. We find

Q = [ d* [a}(k)a,(k) — al (k)a_(k)]
or in the discrete notation

Q=Y Wt - Np) (12.64)
k

and by (12.59), [@,P,} = 0.

According to (12.64) the + and — quanta each carry +1and —1
unit of charge @, respectively. Thus [P,‘,ai(lc)] = +k“ai(k) and
[Q,a!.(k)] = +a' (k), and a! (k) is an operator which increases the energy
by k* and the charge by +1; that is, it is a creation operator for a
quantum of four-momentum k* and charge +1. Similarly, a.(k) is
an annihilation operator for such quanta and o' (k) and a_(k) are the
creation and annihilation operators, respectively, for quanta with
momentum k* and charge —1.

The quanta of charge +1 and —1 appear symmetrically in the
theory according to (12.59), (12.61), and (12.64). In order to attach
a physical significance to the charge @, we must introduce couplings
which distinguish between different signs and magnitudes of charge.
In discussing the Klein-Gordon equation in Chap. 9, the current j* was
coupled to the electromagnetic field and @ was identified as the electric
charge. More generally, we identify the quanta with positive eigen-
values of @ as the particles and those with negative eigenvalues as the
antiparticles. The charge symmetry of the quantum field theory is
then equivalent to a statement of the symmetry of the theory between
particle and antiparticle interchange. The complex field amplitudes
provide a convenient basis for constructing the charge eigenstates.
These may be the 7+ and the #— which are created from the vacuum by
the al:(lc) and a! (k), respectively. Also, we may use this theory to
describe electrically neutral particles of zero spin which differ by
“strangeness” charge, such as the K° and K°.
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12,6 The Feynman Propagator

In the propagator approach to a theory of the charged Klein-Gordon
particle in the companion volume, we were led to the Feynman Green’s
function by the physical boundary condition that only positive-fre-
quency solutions propagate forward in time out of an interaction. In
order to see what plays the role of the Feynman propagator in the quan-
tized field theory version of the charged Klein-Gordon particle, we
consider in this formalism the space-time development of a state con-
taining one quantum. To form a one-particle state (unnormalized) of
charge +1, we operate on the vacuum with ¢*(x,f):

Ti(x) = ¢*(x,0%0 = ¢*(x,1)|0) (12.65)
Only the creation, or negative-frequency, part of ¢*(z) survives in
(12.65) according to (12.62), and therefore we may write

V. (x,t) = ¢*O(x,0)|0) (12.66)
where

a+ (k) eik*z

e*)(x,t) = / \/(2 )32wk (12,67
ot (ke .

)(x,t) =
¢(x,0) [ \/(2 )32w,,
denote the creation, or negative-frequency, parts and ¢*® and ¢
the corresponding positive-frequency parts of the fields (12.57).
The amplitude for the state (12.65) to propagate forward in time
to (x',t') for ¢’ > tis given by the projection
0 — T4, a(x,D) = Qe ) EDIOE — 1
= (0]e™® (x',t")¢* 2 (x,8)|0)6(' — )
Equation (12.68) is the matrix element for the creation of a quantum of
charge +1 at (x,f) and its reabsorption into the vacuum at x’ and at a
later time ¢’ > t. Another way of increasing the charge by +1 unit at
(x,t) and of lowering it by —1 at (x',t) is to create a quantum of charge
—1 at (x',¢') and to propagate it to x, where it is reabsorbed into the
vacuum at a time ¢ > t’. The amplitude for this is given by
0(t — WY (x,0)|¥-(x',t")) = (Ole*(x,)p(x',')|0)6(t — 1)
= (0lp*® (x,0)¢ 2 (x',t")[0)6(t — ¢') (12.69)
The Feynman propagator is formed by adding together the amplitudes
(12.68) and (12.69):
p(@’ — z) = Qle(x)e*(@)|0)0( — 1) + Ole*(2)e(2)[0)0( — ¢)
(12.70)

(12.68)
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Inserting the expansions (12.57), we verify the identity of (12.70) with
the expression for the Feynman propagator (9.10) and (9.11) used
earlier in the propagator approach in Chap. 9:

ibr(@ = o) = [ G IE 0 — e 4 ot = e

d'k 1 o
e m T (12.71)
(O + m)Ar(@’ — z) = —842’ — )

In this form the Lorentz invariance of the Feynman propagator is
displayed explicitly. Because the field operators commute for space-
like intervals according to (12.37) and (12.41), their products can be
time-ordered in a Lorentz-invariant way asin (12.70). Asa convenient

shorthand for this time-ordering operation, we introduce a T' operator
with the definition

T(a(x)b(2")) = a(x)b(x)6(t — ') + b(xNa(x)o’ — ) (12.72)
The T operator carries the instruction that the field operators at the

- earliest times stand to the right and may be generalized to apply to a

product of any numbers of operators. The Feynman propagator is
then written

tAr(a’ — z) = (0|T(p(2")¢*(2))|0) (12.73)
or equivalently in terms of hermitian fields
185Ar (@’ — x) = (O|T(e:(2")¢i(x))|0) (12.74)

Just as in the one-particle theories, the Feynman propagator plays
a central role in calculations of transition amplitudes in quantum field
theory. The propagation of a particle from x to x’ when ¢ > ¢, and
the antiparticle from x’ to x when ¢ > ¢/, is described by Ar(z’,z).
This is the same physical interpretation discussed in detail for the
Feynman propagator and boundary conditions in Chaps. 6 and 9 for
the particle and antiparticle solutions.

Problems

1. Confirm that —(¢/2)e**[Myu.,¢] = 8¢ for a scalar field.

2. Compute
(012%/0)
with

-1 s
o=3 [, &z @

and V a spherical region of radius R.
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13.1 Quantum Mechanics of n Identical Particles

We have explored the consequences of quantizing a classical field
according to the canonical procedure. In this way we obtained a con-
sistent description of particles which obey Bose-Einstein statistics.
The formalism, flexible enough to allow creation and destruction of
particles, successfully circumvented the difficulties in the one-particle
theory of the negative-energy solutions and of the negative probabilities.

It would be natural at this point to apply this formalism to develop
similar many-particle theories, starting with different lagrangians
which lead to the nonrelativistic Schrédinger equation, perhaps, or to
the Dirac equation for particles with spin 4. Such a program is
bound to lead us astray, however, because we have seen that from the
canonical quantization procedure there emerge particles obeying Bose-
Einstein statistics, whereas the spin-14 particles such as electrons
and nucleons are observed to obey Fermi-Dirac statistics and an exclu-
sion principle. We shall therefore have to change some of the steps.
The same changes which lead to the Fermi-Dirac statistics are also
required on other grounds, as we shall see, and we thereby arrive at a
connection between spin and statistics which is one of the significant
achievements of quantum field theory.

In order to come directly to the required changes in the quantiza-
tion procedure, we shall turn it around and begin with a many-particle
theory for fermions based on the n-body Schrédinger equation, which
we attempt to reformulate as a theory of quantized fields. Instead of
quantizing a classical field theory as in the preceding chapter in order
to arrive at a many-particle theory, we start with the latter and seek the
form of a quantum field theory in accord with the exclusion principle.!

Our starting point is the Schrédinger equation for n identical
noninteracting particles:

iaa;f X1, . . . ,Xq;t) = HY (13.1)

n
with H = Z H (x;,p;) given by a sum of one-body terms, all of the same
i=1

form. Variables may be separated in such a problem and a particular
solution is a product

V(X1 - . . X3 l) = H Uq, (Xi,8) (13.2)

i=1

1P. Jordan and O. Klein, Z. Physik, 46, 751 (1927); P. Jordan and E. P. Wigner,
Z. Physik, 47, 631 (1928); and V. Fock, Z. Physik, 76, 622 (1932).

4
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of solutions u.(x,t) of the single-particle Schrédinger equation

Hua(x,t) = za“T(,’”) (13.3)

The general solution of (13.1) is built up by superposing product solu-
tions (13.2), and it may be written

2

V(X1 - . . ,Xnjt) = —= 2 clay, . . . ,am)

X Ua, (X)) + ¢ ¢ Ua,(Xnyt) (13.4)

with the 1/4/7! inserted for later convenience. N is the number of
single particle levels. If the u,(x;!) are assumed to be members of an
orthonormal set, the normalization condition on the expansion coeffi-

cients is
N

1 Y leten, . @l =1 (13.5)

The spectrum of coefficients ¢ determines the n-particle state in (13.4)
and must satisfy an indistinguishability principle for identical particles.
This requires the density |¥(xy, . . . ,Xa; t)|? to be invariant under all
interchanges of its arguments and, therefore, that ¥ itself must be
either symmetric or antisymmetic upon such interchanges.! Corre-
spondingly, ¢(ai, . . . , @,) must be symmetric or antisymmetric upon
interchange of o;

e ) =de(- @) (13.6)

These two sign alternatives lead to the Bose-Einstein or the Fermi-
Dirac statistics, respectively.

An enormous amount of information is contained in (13.6), since
if one knows one of the coefficients c(e, . . . ,@,) in (13.4), (13.6)
immediately provides knowledge of n! — 1 additional coefficients.
One may then construct a more compact expansion than (13.4) by
assigning a natural ordering to the states « and defining

_ e, L an) a1 <o < * < ay

Clen, oo yom) = lO otherwise

1If ¥ is stself allowed to be a column vector, more general kinds of statistics

are possible. See in this connection H. S. Green, Phys. Rev., 90, 270 (1953), and
0. W. Greenberg and A. Messiah, to be published.
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For the case of the Fermi-Dirac statistics, (13.4) may be rewritten as
‘I’(Xl, N ,Xn;t)

1
= 7-_—_!0" z 5((11, [N ,a,.)Z Bpual (Xl,t) e u,,,,(x,,,t)

,....l!»=l

N
V—T ai, . ..Z,an =1

sum over all permutations P of the o;

Uey (xlxt) st uﬂn(xlyt)

.............

Uay (Xnl) + + + Uay(Xnyl)

&ay, . . . o)

g
=+
=
3~
]

sign of the permutation P

The Number Representation for Fermions

The information contained in the wave functions (13.4) or (13.7) is not
which particles have which quantum numbers, but how many of the n

- indistinguishable particles are in the various quantum levels. In this

we see an analogy with the quantum theory description of the Klein-
Gordon field. The state of the field, or n-particle system, is described
in terms of the numbers of quanta, or particles, in each single-particle
state. The difference here lies only in the fact that for antisymmetric
solutions these numbers are 0 or 1 for each state. Recognizing this
parallel, we aim to express the dynamics of the n-partclie fermion
system (13.1) in the language of quantum field theory.

To begin, we change notation in (13.7) so that the sum over levels
ay, ...,a,=1 ..., Nisreplaced by a sum over the occupation
numbers 7., which tell whether the individual levels « are occupied
(ne = 1) or vacant (n, = 0). We introduce the notation ¥(x;, . . . ,
Xn) M1, . . . ,Nn, t) for the Slater determinant [as in (13.7)] formed from
single-particle wave functions u,, of n particles in levels «;; the n col-
umns of the determinant are so arranged that the u., appear in ascend-
ing or natural order in ¢y < a2 < * * * < e, and

no= 11 if @ = «; for some ¢
“ 0 otherwise

For example, if there are seven levels and particles in levels 2, 4, and 5
(al = 2, Qg = 4, az = 5),

’ u(X1,t)  ua(Xyt)  us(xa,?)
U(X1,X2,X3;0101100;¢) = || ua(xa,t) us(Xe,t) us(xet) | (13.8)
uz(xa,t)  ua(Xst)  us(xs,f)
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The wave function (13.7) is now simply
1

1
V(X1,X2, « - « ,Xnjl) = —= c(ny . .. nN)
\/n’ n,. .ZnN=0
X U (X,X2, - . « ,Xn; N1, . . . ;b)) (13.9)
with
cd(ny ... ny) =&y, @z . .. ,am) (13.10)

with the n, defined as before.
The normalization condition now reads

Yo, ... =1 (13.11)
Niyeon, nN=0
indicating that ¢’(ny, . . . ,ny) is to be interpreted as the probability
amplitude for a given population distribution {n, . . . ,nx}.

In order to continue this transcription of the n-particle fermion
system into the quantum field theory language, we seek a convenient
way of building up n-particle wave functions from a vacuum state. It
is already clear from the propagator development of the Dirac hole
theory that the creation and destruction of particles plays a central
role in the dynamics. Inclusion of interparticle interactions in (13.1)
will lead to transitions between states of different quantum numbers,
and therefore we are interested in amplitudes to destroy a particle in
one state @ and create one in another state o'.

To this end we follow the lead of the Klein-Gordon theory and
introduce creation and destruction operators designed to build and
connect such states. First we define a vacuum state ®. The vacuum
contains no particles, and hence no energy or momentum, correspond-
ing to solutions of (13.1) or (13.3). Operating on &, the creation
operator is so defined as to generate a one-particle state ®, with quantum
numbers «

al® =&, =00---1--") (13.12)

Before relating these states and operators to the wave function language
of (13.1), we construct a simple and convenient representation.
Because of the exclusion principle the state « is either empty or full—

and we represent these two possibilities by [(1)] and [(1)] , respectively.

The vacuum state is then a product of the column matrices for each
state empty

& = []| [(l’]a (13.13)
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and the one-particle state is

By = [(1)] l} [(1)] (13.14)

The creation operator al, can then be represented by a 2 X 2 matrix in

the space of the o'th state which produces [(1)] from [(1)] . Any

matrix of the form | ¥ ! , with arbitrary z and y, accomplishes this.
Yy 0]«

a’

Because of the exclusion principle we want a), operating on an occupied
state [ (l)]a to destroy the state, yielding a null vector; consequently,

wesetx =y = 0:
t _ |0 1
als [O OL (13.15)

In a similar way we construct the annihilation operator a, from the

conditions a. [(1)] o= [(l)] ) and au [(1)] =0. Wefind

00
o = [1 0]a’ (13.16)

which is the hermitian conjugate of al,. A simple set of anticommuta-~
tion relations! for the a. and a}, follows from (13.15) and (13.16)

{@u,0ur} =0 (18.17a)
{al,al} =0 (13.17b)

{aw,al} = [(1) ?]

The exclusion principle has led to anticommutation relations
between the creation and annihilation operators in place of the
analogous commutators (12.10) of the canonical quantization pro-
cedure for bosons. Equations (13.17a) and (13.17b) express the
impossibility of removing or of introducing two fermions into the same

state. The two eigenvalues of the product a\a., = [(1) g] are 1 for

! The representation in (13.15) to (13.17) shows the complete analogy between
aw, ag and the two-component Pauli spin matrices ¢, — iy, o, + ioy. The
vacuum state (13.13) corresponds to a spin state with all spins down; a}, flips the
a'th state from spin down to spin up, an occupied state here corresponding to the
state of spin up.

li
[y

(13.17¢)
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an occupied state o’ and O for an empty state. This is the number
operator, denoted by

Neo = alvan

It differs froni the corresponding number operator for bosons, since
it has just the two eigenvalues 0 and 1.
We can now link the operator language with the one-particle wave

functions u.(z) in a simple way. To do this, we introduce a field
operator with the definition

N N
X&) = Y u(xha.  x*@&H) = Y wixfal (13.18)
a=1 a=1
The wave function u, (x,f) is just the matrix element of the field operator
x(x,t) between the vacuum &, and the one-particle state ®,,:

(Po,x(%,8),8a) = ua (X,0) (13.19)

We can continue in the same spirit and construct from the fields
the n-particle wave function (13.8) and the hamiltonian operator with
the same eigenvalue spectrum as H in (13.1). For this we must con-
sider states containing several particles. As constructed in (13.15)
and (13.16), the operators a,, and af,‘ commute with the a,, and aI,,, for

J # 1, since they operate on different states. For example, for ¢ # j,

tota |1 1 of _
o=t =[N [0 T[] = en 920

aFa,,a;j
If we continue to work directly with the operators af,‘, we shall
obtain a representation which is chained to a particular ordering of the
states a. For whereas ®,,q; in (13.20) is symmetric under interchange
of a; and o, the state ¥ defined above in (13.8) is antisymmetric. It is
therefore, from a mathematical point of view, convenient to modify the
operators! a,, al so that they satisfy anticommutation relations for
different states as well as for the same state (13.17). This means, in
particular, for different states a and o the modified operators b/, should
satisfy
bibl |0y = —blbL|0) (13.21)

in contrast to atal|0) = +alal|0). To accomplish this desired sign
change and at the same time preserve the interpretation of bl as a crea-
tion operator, we write
bl = alna (13.22)
1 Jordan and Wigner, op. cit.
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where 7. is an operator diagonal in the number representation in which
we work. Inserting (13.22) into (13.21), we find that (13.21) is satisfied
provided

ai,na,- = —ﬂajali

t

for a; < oy (13.23)
ol na; = a0l

The diagonal operator (1 — 2N,) anticommutes! with al; we are then
led to write

ai—1 ai—1
e = 1] (0 —2No) = [] [_(1) (1)] (13.24)
a=1 a=1 @
therefore
ai—1
72Ny * * * ny) = (=Dr«¥(ny - - - ny)
a=1

The operator
ba = Nala = QAaNa

is the hermitian conjugate of bl and is interpreted as a destruction
operator. As a creation operator, bL‘_ generates an occupied state

[(1)] from an unoccupied one [(1)] with an amplitude +1 or —1

depending upon whether an even or odd number of particles occupy the
states a for which a < a;; thus a state in which levels o; and «; are
occupied is antisymmetric under interchange of the labels o; and ;.
These operators b, and b}, satisfy the same anticommutation relations
as the a, and a!

{bL,L} = {bayba} =0  {ba,bl} =1 (13.25)
Furthermore, the general commutation relations
{ba;bl'} = Oaa’ {bayba’} = {bL,bL} =0 (13.26)

follow by our construction; they can be verified explicitly. For
example, for a > o

baba’ + ba'ba = Nalola'Ma’ + Na'Ca'AaNe

— QaOaMaNa’ + Qo'AaNaNar = 0 a > a'
The number operator in terms of the b’s is simply

N. = ala, = blbe (13.27)

1The operator (1 — 2N,) is here the analogue of the Pauli spin operator —o..
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The states
@) - s @) s - DB = B(na, . . . ) (13.28)

are eigenfunctions of the number operator and form a complete ortho-
normal set:

N
(q)(n;, ... yn;l):q)(nly c e aN) = H Ongnar
a=1
Superposing to form a general state, we write

B= 3 ... oG - ODmE (13.29)

ny,...,nN=0

where the expansion coefficients ¢/(n1, . . . ,ny) are the probability
amplitudes for a given population distribution

(@,®) = j I, . . . )| (13.30)

1, ... =0

and may therefore be identified with the coefficients in (13.8) and (13.9).
Nonvanishing matrix elements of the operators b, and b, are

(Q(n;’ o« . ynllv))bikq)(nl) e :nN»
= (®o, bayr * * - DarblbL, - ¢ - blL®o)
_ [ (—=)»-*¥ if 7o = ng for a # ox and ng, = 05715, = 1
10 otherwise

(‘I)(’n;, LR :n;l)’bahé(nl: L ;nN»

_ { (=)*  if ng = n for a # ax and ng, = 0;na, =1 (13.31)
0 otherwise

N N
wheren = Y no,n' = Y n, and axis the kth member of the ordered
a=1 a=1

set {anos, . . . ,0n} and ap the K’th member of the set {a;, . . . ,a,,}.

In the same way as we formed one-particle wave functions (13.19),
we are now in a position to construct antisymmetric n-particle wave
functions. For this we introduce the field operator ¢(x,t) as in (13.18)
but with the a. replaced now by the mutually anticommuting b,:

o(x,l) = i Ua(X,Dbe  o*(x,0) = f: uX(x,0)bl,  (13.32)
a=1 a=1

Forming the matrix element of a product of n field amplitudes
¢(x;,?) at a common time ¢ between the vacuum and a general state ®
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given by (13.29), we find after repeated application of (13.31)
1
v/nl

where ¥ is the antisymmetric n-particle wave function in (13.9). The

anticommutation relations of the creation and annihilation operators

may be reexpressed as anticommutation relations of the operators!
(7] and (p*

(Po,0(x1,t) * * + o(Xny)®) = ¥(Xy, . . . ,X,;1) (13.33)

{ﬂo(x;t):‘l’(xlrt)} =0

lo*(x,0),0*x',D} =0
N
{‘p(x)t)y‘p*(xlyt)} = z’ {ba,bl,}ua(x,t)u:,(x’,t)
= i ua(X,Dus(x',t) = 83(x — x’) (13.34)
a=1

With the states and operators in hand, we are now equipped to
cast off from our moorings to the wave function language and to develop
the dynamics, that is, (13.1), in terms of the quantized field formalism.
Equation (13.3) can be rewritten as a linear differential equation

H(x)o(xl) = z‘-’ﬁf;t‘—‘) (13.35)
for the field operator introduced in (13.32). In analogy with the pro-
cedure applied to the Klein-Gordon theory, (13.35) may be considered
as a field equation for a classical field ¢, derived perhaps from an appro-
priate lagrangian. Then upon imposing the relations (13.34), we
reinterpret (13.35) as an operator equation, the main difference from
the Klein-Gordon development being our use here of anticommutators
instead of commutators, resulting in Fermi-Dirac instead of Bose-
Einstein statistics. This procedure is known as the second quantization.
In the first quantization, classical particle coordinates are replaced by
quantum-mechanical operators acting on wave functions; now we have
taken the one-particle Schrédinger equation, interpreted it as a field
equation, and then imposed quantum conditions on the field amplitudes,
which become operators satisfying (13.34). However, we have shown
above that the content of this formalism is the same as that of the
many-body Schrédinger equation. The expansion coefficients ¢’(n,,

. ,my) in both (13.9) and (13.29) describe the state of the n-particle

1Tt is here that we see the utility of the bL operators instead of the az,. The
simple form of Egs. (13.33) and (13.34) would not exist had ai been used instead
of b}, in (13.28).
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system in either language. For the total energy we have in the wave
function language, by (13.9),

[d“xl c o A3, TRy, . . . X B) z H(x:,p:)V (X1, . . . ,Xn50)
=1

I
-

(s, ,n~)|2(i naE) (13.36)
1

Ny e ooy nN— a=

Reverting to the operator language, we recognize (13.36) as the expec-
tation value in the state (13.29) of the hamiltonian operator

H= [ du o*c)HED ()
N

= N.,/ a3z uXHu,
= i N.E, (13.37)

H is just the hamiltonian operator for the field, as we might have
expected.

To round out our discussion of this formalism, we construct the
Green’s function for a particle to propagate from (x,¢) to (x’,t') with
¢ > t, for comparison with Chap. 6. For this we need the amplitude
for a particle to be created from the vacuum at (x,f) and to be destroyed
later at (x',t').

A single particle localized at the point x has a wave function

proportional to
N

V(X)) = 33(x — ') = Y ua(x’)uz(x,) (13.38)
a=1
The corresponding state in the second quantized version is, by the
comparison of (13.38) with (13.9) and (13.29),
N
Ti(x,0) = Y uX (X, 1)bide = o*(x,1)®0 (13.39)
a=1
The Green’s function is given by projecting ¥,(x,t) for the particle
produced at (x,{) on the one-particle state ¥,(x',¢’) at a later time
i >t
G(x5x0)

- 7:(‘1’1 (X',t'),‘l’ 1 (_x;t) ) a(t, - t)
=10t — ){0le(x't) o*(x,)[0)
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Using (13.31) and (13.32), this reduces to

G xf) = —20¢t — 1) z ua (Xt uk (x,8)

and coincides with (6.28) as introduced in the discussion of retarded
Green’s functions in the propagator theory in Chap. 6.

In concluding this discussion of the correspondence between the
many-body and the second quantized field theory versions of the
Schrédinger theory, we point out two of the advantages of the field-
theoretic formulation. These merits are measured by ease of calculat-
ing physically interesting matrix elements and have led to extensive
applications of the field theory methods to nonrelativistic many-body
problems in recent years. First of all, the operators b, and b}, by their
algebraic rules, automatically do the bookkeeping necessary to preserve
the antisymmetry of the wave functions. Second, they provide the
desired flexibility for a natural and simple description of physical sys-
tems with varying numbers of particles.

13.3 The Dirac Theory

We return now to the case specifically at hand, namely, the Dirac
equation. In order to maintain a close parallel with the discussion of
the Klein-Gordon theory, we derive it from a lagrangian by an action
principle. The four components of the field .. plus those of the adjoint
V. are treated as eight independent variables.

Starting from the free Dirac equation

@Y —m)y =0 (13.40)

we construct the lagrangian by left-multiplying by 8¢ and integrating
over all space-time between ¢, and ¢,

0= ["d 59@)6Y — m@) = 8 [ de I@6E — mu()

(13.41)

from which we identify the lagrangian density
£(@) = Y(@) (@Y — m)Y(x) (13.42)
Variation of the action (13.41) with respect to ¢ gives the adjoint

equation

H=i¥ —m) =0
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The canonical procedure gives the momentum conjugate to ¥

3L
Wa

Since (13.41) contains no derivatives of ¢, we find no conjugate momen-
tum to y1; Eq. (13.43) shows that 7y is itself the conjugate momentum
10 ¥». The resulting form of the hamiltonian density is

Ta =

S (13.43)

5 =mp — & = (=i V + Bm)y = w%‘p (13.44)

where the last form follows from the Dirac equation. The form of 3C as
the one-particle hamiltonian operator bracketed by the field and its
hermitian conjugate agrees with that to which the nonrelativistic dis-
cussion led us in (13.37).

The full array of conservation laws for energy, momentum, and
angular momentum follow automatically from the displacement and
Lorentz invariance of £ and can be calculated from the definitions
(11.48) and (11.57):

9y (13.45)

g = iy ox
»

which leads by (11.49) to the energy and momentum constants of the
motion

H = [3%d3% = [yt(—ia-V + Bm)y d°x
by (13.44) and

P = [Yf(—iV)y dix (13.46)
The angular momentum density 9#* and conserved angular momentum
M are
M = iy | 2 9 a9 + Z* )y (13.47)
ox) iz,

M = fdax Lo

where Z* = 1/[y*,4*] is the spinor rotation matrix under a Lorentz
transformation and adds the spin angular momentum in the last term of
g+, For the space components in particular, we have

J = (M M Mv) = / dsz ¢t (r X Zl.v + %a) v (13.48)

which looks familiar as the sum of orbital and spin angular momentum,

J=L+s.
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We can identify one further conservation law for the free Dirac
theory when we recall that solutions of the Dirac equation satisfy the
condition (8/dz*) $y* = 0 and therefore that

= [dizyly (13.49)

is a constant total “charge.” Thisis analogous to the conserved charge
(12.63) in the Klein-Gordon theory for non-hermitian fields.

Continuing along the canonical path, we would form the quantum
field theory now by imposing the commutator relations (11.39). We
know, however, that these lead to many-particle quantum systems
which obey the Bose-Einstein statistics. In order to accommodate
the exclusion principle in constructing a quantum field theory of the
many-electron system, these commutators must now be replaced by
anticommutators as in the preceding section.

Momentum Expansions

The quantization procedure will be carried out in momentum space in
terms of the creation and annihilation operators. The development
and discussion of the first part of this chapter for the Schrédinger field
can then be applied directly, since we again want operators, as in
(13.32), which create states in accord with the exclusion principle.

The general wave expansion of a solution of the free Dirac equa-
tion (13.40) takes the form, as discussed in Chap. 3,

v = 3 [ o B b up e + @ e

Vi) = z [ () \/E (b1 (p,8)a(p,8)vee?= + d(p,s)5(p,s)vee 7]
(13.50)

with E, = po = ++/|p[> + m?%. The following useful relations were
established in Chap. 3 for the spinors! u(p,s) and v(p,s)

(a) Dirac equation
@ — mu(ps) =0  a(p,s)(p —m) =0
(p + m)v(p)s) =0 ?7(27:3)(]9 + m) =0

1For example, (3.16), (3.30). Recall that the notation u(—p,s) means
u(4/p? + m?, — p, s). The sign of energy is always taken positive in spinors.
The normalization convention on b, bt is designed to make quanta carry charge +1.
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(b) Orthogonality

a4(p,89)u(p,s) = b = —(p,8)0(p,s’)

u'(p,s)ulp,s’) = % 8a = v'(p,8)0(p,8)

i(p,s)u(p,s’) = 0 = vt(p,s)u(—p,s") (13.51)
(¢) Completeness

Y [al®,5)6(p,8) — va(D,8)36(p,8)] = 8as
ts

Y wp)alp) = (B, = Waloes

2m
+s

— z va(P,8)05(p,8) = (—2m—p>aﬂ

Upon second quantization of the Dirac field, the expansion coeffi-
cients b(p,s), b'(p,s), d(p,s), and d(p,s) become operators which
annihilate and create particles. Since we wish to arrive at an exclusion
principle, they are assigned anticommutation relations analogous to
(13.26), which read in the continuum notation (13.50),

(A—(P))es

{b(p;s)’bf(p’;s’)} = 5"/53(1) - p’)
{d(p:s)ydf(p’;s’)} = 663’63(1) -p)
{b(p,8),b(p",s")} = {d(p,s),d(p',s")} =0 (13.52)

{bT(P,S),bT(P';S’)} = {dt(p;s))df(p’;s’)} =0
{b(p,s),d(p',s’)} = {b(pss);df(plys’)} =0
{d(p,9),b(p",s)} = {d(p,9),b'(p’,s")} =0

The anticommutation relations for the fields (13.50) can now be
derived from (13.52). For example, we find with the aid of (13.51),

{Wa(x,) WA (x",0)}

y /fﬁ(’%?’ %-%'63(p—p’)6w

ts, 8
>< [ua(p,S)dr(p’,S’)vi’pei"““" + 0a(p,8)0:(p,8") yoge ]

/ (27")3 2E’ (@ + m)ylage® =) — [(m — p)7lage™ >}

[ (2,)32E e C2E 805 = 8%(X — X')dap (13.53)
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There emerge similarly, in analogy with (13.34)
WEHyE,D} =0 )&} =0 (13.54)

In parallel with the Schrodinger theory we interpret bt and d as creation
operators for electrons. In the Dirac theory, however, we must ¢ope
with the negative-energy solutions; d creates a state of negative energy.
To exhibit this, we express the energy and momentum operators in
terms of the b, d, bt, and d'. Inserting (13.50) in (13.46), we find with
the aid of (13.51)

_ dipdip’ | m?
"= ‘/dax 13218' // (2m)® EEy By
’ X [5(p,8)a(p,9) 706 + d(p,8)0(p,5)voe=7]
X [b(p',8"Yu(p’ e~ "= — dt(p’,s)o(p’,s)e™"7]
= Y [ @pmlbtmeb@s)ut (poulp,s)
e — d(p,9)d"(p,8)" (p,5)0(p,s")]
= ) [ @ Bt 0,989 — dp,9)d'(p,9)] (13.55)
ts
Similarly,

P=) [dp bt wab®s) — dpodips]  (13.56)
ts

From these forms for H and P and from the relations (13.52) it follows
that d(p,s) creates a negative-energy particle with (—E,, —p) and that
b (p,s) creates a positive-energy particle with (E,p). d'(p,s) and b(p,s)
are the corresponding annihilation operators.

We also see that the energy operator in (13.55) is not positive
definite. This presents an apparent difficulty because one can always
find a state of energy lower than that of any proposed ground state by
introducing more particles into negative-energy states. However, as
we have discussed at length in Chap. 5, the hole theory interpretation
of Dirac removes this difficulty. According to the hole theory, we
define the vacuum state as the one obtained by filling all the negative-
energy electron states and leaving empty all the positive-energy ones.
That we can in principle define the vacuum in this way requires use of
an exclusion principle and, consequently, of anticommutator relations
in formulating the second quantized theory of the Dirac field. Had we
attempted to quantize according to the canonical procedure in terms of
commutators, we would now find ourselves in fundamental and
inextricable difficulties. According to Bose-Einstein statistics, we can
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always introduce unlimited numbers of particles into any given state;
and therefore there would exist no ground state of lowest energy for
hamiltonian (13.55). This necessary connection of the anticommu-
tators with the Dirac theory is a particular example of a fundamental
theorem in local, Lorentz-invariant field theory, first proved in 1940 by
Pauli, according to which particles of half-integer spin must obey
Fermi-Dirac statistics and those of integer spin, Bose-Einstein sta-
tistics.! We return to a more general discussion of this point in
Chap. 16.

In view of the hole theory interpretation of the Dirac theory, we
now rewrite the energy-momentum four-vector of (13.55) and (13.56)
in the form

P =Y [ & pt'0,b(,9) + @ @,9dD,9) — (d0,5),d'(,9)])
" (13.57)

Operating on the vacuum of hole theory, the first two terms vanish,
since there are no positive-energy electrons present to be annihilated
by b(p,s) and no holes among the negative-energy states to be filled by
d(p,s). The last term is just an infinite constant which we discard,
since all energies and momenta are measured relative to the vacuum.
Formally, this is equivalent to redefining P* in terms of normally
ordered products of field amplitudes. In normal order the products of
field operators are so written that the positive-frequency parts

Yy = z f @r )%\/E%;b(p,S)u(p,S)e"’""
Y = JO = 2 [ & )%\/Ezpd@,s)a(p,s)e—m

stand to the right of the negative-frequency parts

Yo = z / @ )/l,\/?- d'(p,s)v(p,s)e*
JO =§@® = Z f @r )%\/- bt (p,s)u(p,s)e*®

1'W. Pauli, Phys. Rev., 68, 716 (1940), Ann. Inst. Henri Poincaré, 6, 137 (1936).
Had we attempted to make the wrong spin and statistics connection in (12.14) and
(12.15) for spin-0 quanta, the energy-momentum four-vector would no longer be an
operator whose eigenstates describe a physical system, but would be no more than
an infinite constant.
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For fields which obey anticommutation relations the normal ordering
carries with it the instruction to change the sign of the term for each
interchange of field amplitudes required to bring the fields into normal
order, viz.,

Wats: = WS H IOV + IO — v (13.58)

With this definition of normal-ordering, a bilinear form such as the
energy-momentum four-vector (13.57) is altered only by a ¢ number to

Po=) [ ap p0 (b + dHpdps)]  (13.59)

ts

b(p,s) destroys and b'(p,s) creates a positive-energy electron with
quantum numbers (p,s), and in analogy with the Klein-Gordon theory

N+*(p,8) = b'(p,8)b(p,s)

is interpreted as the number operator for positive-energy electrons.
The eigenvalues of N*(p,s) d3p tell how many electrons of spin s are in
the momentum interval d3p. df(p,s) destroys a negative-energy
electron, which is interpreted in the hole theory as the creation of a
positron; similarly, d(p,s) destroys a positron, and in (13.59)

N-=(p,8) = d'(p,s)d(p,s)

is the number operator for positrons of positive energy. Equation
(13.59) is simply the sum

Pr =Y [ dw piN+(p9) + N-(p,s)] (13.60)
ts

The charge operator can be similarly expressed in this representa-
tation. Inserting (13.50) into (13.49) for the conserved charge, now
normal-ordered, we verify by direct calculation that

Q= [ dwyy: = ) dp B (p9b(ps) + dp,5)d! ()
ts

= Y [ aw (N+@,5) — N-@,9)] (13.61)
ts

The effect of normal-ordering is to dispose of an infinite constant: the
total charge of the vacuum of filled negative-energy states. Equations
(13.60) and (13.61) show the symmetric appearance of electrons and
positrons of equal masses and opposite charges in the quantum theory
of the Dirac field. This is the same charge symmetry as established
and discussed in the positron theory development of Chap. 5. There
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the conserved current Jy*¥ was coupled to the electromagnetic potential
and the charge (13.61) was specifically identified as an electric charge.
This identification is based on the classical analogy; however, broader
interpretations of the conserved charge are also possible, as we shall
discuss in Chap. 15.

Turning next to the angular-momentum operator (13.48), now
normal-ordered, we show: that the state of a positron at rest and with
spin along the z direction, that is,

‘I’lpositron = dt(p’s) IO>
with p = (m,0,0,0) and s = (0,0,0,+1) (13.62)

is an eigenstate of J, = / it [(r X %V) + —é—o-z] ¥: d®z with eigen-

value +14 and therefore really represents a particle state with spin
+14 along the z axis. We form

Jz v, positron = [Jz;dt(p;s)]l())

where we used J,|0) = 0, and compute the commutator:

1 [m 1 1
Jz\I/l positron = / dix W .\/:%,n; 6_1p'xvt(p,8) [(r X Z V>’ + -2—(72‘]
¥(2)[0)

Since the orbital angular-momentum operator L, = —i(r X V), is
hermitian, we may take it to operate to the left, in which case L, — 0
for a particle at rest.! Then, since

v(p,s) =

-0 O O

in the rest frame for our choice (13.62) of s [see (5.7)], we have

vi(p,s)o. = —vt(p,s)
and

1 | |
Jz\I’lpositron =+ é f d*x (27)% e Eﬁp Uf(p,S)ll/(x)]())
= %df (P;s) IO> = +%‘I/1 positron
The quantum formalism of the Dirac field with hole theory thus leads to

1 To rigorously justify this parts integration, it is better to use packets instead
of plane waves.
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the desired result that the positron spin is opposite to that of the missing
negative-energy electron.

Relativistic Covariance

The displacement and Lorentz invariance of the quantum theory of the
Dirac field is established by verifying that the anticommutation rela-
tions (13.53) and (13.54) lead to the Heisenberg equations (11.70) and
(11.73):

APy (@)] = "‘“””)

Mo ()] = xi*gf”—) - o2 4 L)

(13.63)

The proof of (13.63) with the use of the P* and M#” of (13.46) and
(13.47) is straightforward, and it is left as an exercise for the reader.

The equal-time anticommutation relations can be generalized to
two different times for the free Dirac field, since we have the explicit
solutions (13.50), and can also be put in covariant form. Returning
to (13.53) for unequal times we find

Va(x,t) 9i (Xt} = BryeE )32E ([P + m)yOage—in-e—)

— [(m — P)y°lage’® ==}
= (@Y, + m)y)astA(x — ')

where A(z — z') is the invariant singular function first encountered in
(12.37).
Multiplying by y° gives

{Wa(@) Ps(@)} = (V. + m)ag Az — ') = —iSup(z — 2') (13.64)
Similarly, we find from (13.54)

{Ya(2)¥6(z")} = {Ya(),P6(z")} = 0 (13.65)

We can verify the covariance of these relations by applying (11.67),
the Lorentz transformation, to the fields:

U(a,b)¢(x)U(a,b)~t = S~*(a)¢(az + b)
where for a spinor field the matrix S satisfies
S~y S = aty’
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For example, the right-hand side of (13.64) is not an operator and is
unchanged if we make a similarity transformation U(a,b) - - + U~%(a,b)
with the unitary operators which Lorentz-transform the states. On
the left-hand side we find

U(a,b) {¥a(x) ¥s(@")} U~Y(a,) = 8z7(a) {¥:(az + b),dx(az’ + D)} Sxs(a)
= 871(a) (= Vaz + 1m)nSis(a)A(az — az’)
= (=V: + im)apA(x — 2)

since A(z — 2’) is an invariant function of the coordinate interval and
S-Y(a)Y..S(a) = V., as already computed in Chap. 2. This verifies
covariance of (13.64), since both sides transform under a Lorentz trans-
formation in the same way. For (13.65) this result follows immediately.

Asalready pointed out in (12.41), A(x — y), and therefore S(z — ¥),
vanishes for space-like intervals, (x — y)? < 0. From this it follows
that, although the fields themselves do not commute, bilinear forms
constructed at a point commute with one another for space-like
separations of coordinates:

[Fa(2)¥5(2) Y ()Y (2")]
= Va(@) {¢5(2) I (2") 1 (@) — {Pa(2),dn(z") }¥s(2)¢:(2")
+ W@)Wa() (¥s(2) ¥ (2) ) — (") {Pa(@),¥:(2") }s(2)
=0 for (zx — 2')2 <0 (13.66)

Since the amplitudes with which we associate a physical meaning—
such as charge density or momentum density—are constructed of
hermitian bilinear forms and satisfy (13.66), the Dirac theory, like that
of the Klein-Gordon field, meets our intuitive demands of microscopic
causality.

13.6 The Feynman Propagator

In concluding the discussion of the free Dirac field, we construct the
one-particle Green’s function corresponding to the Feynman propa-
gator of positron theory. The amplitude to create an electron at the
point x = (x,) is

Va(2) = ¢a'(2)[0)

where the index a = 1, 2, 3, 4 labels the particular spinor component.
The B8, a spinor component of the amplitude for this electron to
propagate to 2’ (t' > t), where it is destroyed, is then

Olys(x")¥a' (2)|0)6(" — o) (13.67)
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According to the considerations of Chav 9, the Feynman propagator
does not vanish for ' < ¢ but also describes the propagation of a posi-
tive-energy positron created at 2’ forward in time to the point z, where
it is destroyed. As in the case of the Klein-Gordon field, this is
accomplished by interchanging the operators in (13.67). The ampli-
tude that a positive-energy positron is created at «’ and destroyed at « is

Ol¥at (x)ys(z") |00t — ¢) (13.68)

Both amplitudes (13.67) and (13.68) increase the charge by one
unit at the point 2’ and decrease it at z; their difference forms a Green’s
function. Defining Sr(2’',z) by

(Sr(2',2)Y)pa = —iOWs(e)Wa' (@) 6 — 1)

O¥at (x)¥s(x)[0)6(t — ¢') (13.69)
we find that

(@Vr — m)s(Sr(@,2)7%)sa == 16(0| {¥s(a’) ¥a' () }[0)6( — )
= 7£a64(x, - x)
or (@Y» — m)Sr(@’ — 2) = 842’ — x) (13.70)

Sr(x’ — z) is identical with the Feynman propagator defined and
extensively used in the positron theory discussions of the companion
volume. The evaluation of (13.69) gives the same sum over wave
functions as in (6.48) for the free Feynman propagator.

In the field theory formalism we have come to the Feynman
Green’s function by considering positive-energy electrons and positrons
always propagating forward in time. The electrons and positrons
appear symmetrically in (13.69), the relative minus sign between the
terms being dictated by the necessity of forming an anticommutator
in (13.70). In the positron theory developed in Chap. 6, we fol-
lowed along a particle path with the charge, moving forward in time
as a positive-energy electron and backward as a negative-energy one.
This identification of a positron of positive energy moving forward in
time with an electron of negative energy moving backward has already
been made in Chap. 5.

The Feynman propagator (13.69) plays a central role in field
theory calculations, as it did in the earlier propagator considerations.
We may express it more compactly in terms of the time-ordered prod-
uct introduced in (12.72) for the Klein-Gordon field. In order to
accommodate the minus sign in (13.69), we modify the T symbol to
include a minus sign for each reordering of pairs of fields which are
quantized with elementary anticommutators. Thus for two Fermi-
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Dirac fields a(x) and b(z’)
T(a(x)b(x")) = a@)b(@)oE — t') — b(x)a(zx)8(’ — ¢)
= —T(b(x")a(z)) (13.71)
The Feynman propagator is
Sr(2',2)pa = —H0|T(Wp(z"),¥a(2))[0) (13.72)

Problems
1. Write the hamiltonian both in the form of n-particle quantum mechanics and in
the form of a field theory when two-body interaction potentials are present.

2. Prove that 9M#"* has the vanishing divergence 9/dz* 9M#** = 0 and, therefore,
M = [ ds%z M is a constant independent of time.

3. Verify (13.54) and (13.56).
4. Prove (13.63). Also, obtain the result in p space.
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Quantization
of the
Electromagnetic Field



14.1 Introduction

Since the electromagnetic field is observable classically, it, above all
other fields, should be quantized according to the canonical procedure.
It is ironic that of the fields we shall consider it is the most difficult to
quantize. Indeed, one of the most common versions of this quantiza-
tion—that developed by Gupta and Bleuler'—abandons the notion
we have cherished so far of a positive definite probability. However, a
canonical procedure for quantization is possible. It was, in fact, the
original procedure applied? to the Maxwell field in 1929, but it has the
disadvantage of not being manifestly covariant. The Gupta-Bleuler
procedure, stimulated twenty years later by the modern methods of
covariant calculation, provides a covariant procedure of quantization,
although at the cost of a cogent physical interpretation.

We shall follow here the historical procedure of canonical quantiza-
tion. The Gupta-Bleuler method is discussed in many texts, among
them Schweber, Jauch and Rohrlich, and Bogoliubov and Shirkov.?

The difficulties of the quantization originate in the use of more
variables than there are independent degrees of freedom. One would
like to describe the electromagnetic field in terms of the four components
of the vector potential 4,. Although it is the field strengths defined by

94 394,
- asy

F,, =

which have immediate physical significance, we have already seen in
our calculations of the companion volume that the potentials 4, are
what occur naturally in the interaction terms and transition amplitudes.
However, the four components of 4, cannot all be treated as inde-
pendent variables. Therefore, the canonical quantization procedure
encounters some difficulties. These are the very same difficulties which
must be faced in constructing a classical canonical formulation of the
Maxwell field.

Another way of saying this is that the free electromagnetic field
when decomposed into plane waves consists only of transverse waves,

18. N. Gupta, Proc. Phys. Soc. (London), A63, 681 (1950); K. Bleuler, Helv.
Phys. Acta, 28, 567 (1950).

2 Cf. E. Fermi, Rev. Mod. Phys., 4, 87 (1932).

38. Schweber, “An Introduction to Relativistic Quantum Field Theory,”
Harper & Row, Publishers, Incorporated, New York 1961. J. M. Jauch and F.
Rohrlich, “The Theory of Photons and Electrons,” Addison-Wesley Publishing
Company, Inc., Reading, Mass., 1955. N. N. Bogoliubov and D. V. Shirkov,
“Introduction to the Theory of Quantized Fields,” Interscience Publishers, Inc.,
New York, 1959.
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that is, of waves for which the polarization vector is space-like and
orthogonal to the wave vector. This condition of transversality is a
restriction on the orientation of the vector potential. Only these two
transverse components of the vector potential need be considered
dynamical variables and deserve to be quantized. On the other hand,
there is no unique invariant way of choosing two independent trans-
verse polarization vectors corresponding to a given wave vector, because
there exists always that set of preferred Lorentz frames where the time
component of each polarization vector vanishes. It is here that the
difficulties with manifest Lorentz covariance begin. This will become
only too evident when the details are presented.

In setting up the formalism, we shall abandon manifest Lorentz
covariance by making a particular choice of photon polarizations.
However, we start with the Lorentz-covariant Maxwell field equations,
and when the smoke clears, we shall finally be led back to the same
covariant rules of calculation derived in Chaps. 7 and 8 on the basis of
more intuitive arguments. These rules lead to the same results in
all Lorentz frames.

14.2 Quantization

The components of the electromagnetic field strengths E and B form an
antisymmetric tensor of second rank, denoted by F**, with components

14
R
vl O E. E, E,
. |—-B- O B -B (14.2)
—-E, -—B, 0 B,

—E, B, —-B, 0
The relation of F#**(z) to the vector potential A*(z) = ($,A) as given

by (14.1) is
E=-v3—A B=VxA (14.3)
This implies the two Maxwell equations
VXE=-B V.-B=0 (14.4)
The other two Maxwell equations are expressed by
oFe
ox®

or V.E=0 VxB=E (14.5)
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in the absence of source charges and currents. Furthermore, it follows
that all field components satisfy the wave equation

OF,.(x) =0 (14.6)

To any given field strength F#*(x) there exist many potentials
differing from one another by a gauge transformation

aA (a:)

Zn(x) Au(x) + ——= (14.7)

where A(z) may be an arbitrary function of x and t. Equation (14.7)
expresses the gauge freedom in the choice of the vector potential; if
A,(x) satisfies (14.1), so does A,(x). At this point we leave open the
choice of gauge.

In order to derive (14.5) from a lagrangian by Hamilton’s principle,
we multiply by an infinitesimal variation §4,(z) which vanishes at ¢,
and ¢; and integrate over all space-time within the interval (¢,,t2)

aF" (:c) ta 04,
axr’

0= ["duw b4,2) = — [ dw Fer s

= h" dz Fw oF,, = — 1 5 /t ‘ d'z F,,Frr (14.8)

A satisfactory lagrangian density for a free Maxwell field is thus
04, 94 ) 9A+

1
= ) o = 5 (BT = BY) (14.9)

ax,

£=——F,"F'——§(

Equation (14.8) shows that with this £ Hamilton’s principle gives the
field equations (14.5) if each of the four components of A#(z) is treated
as an independent dynamical degree of freedom.
We now construct conjugate momenta from £ by the standard
prescription:
9L 0L 94,

,o_m_o rk_a;——Ak—E—k-—E" (14.10)

This gives the hamiltonian density

3
k=3 w*d, — & = 14(E* + BY) + E- V& (14.11)

k=1

The hamiltonian is simply

H = [dz 3 = 5[ d*z (E* + B?) (14.12)
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where the final term is disposed of by an integration by parts and use of
the Maxwell equation
V-E=0

Quantization of the Maxwell field is carried out by treating A#(x)
as an operator and imposing commutation relations between A* and
the canonical momenta #*. We attempt to follow closely the canonical
formalism and start with the vanishing equal-time commutators

[Axx,0),A* ()] = 0
[Fk(x,t)ﬂrj(x’)t)] =0
[r*(x,t),A°(x',t)] = G (14.13)

This quantization procedure singles out the scalar potential 4 at
the expense of manifest covariance. Since the momentum =°(z)
conjugate to A°(x) vanishes, A°(x) commutes with all operators and
may be taken to be a pure number (¢ number) and not an operator, in
contrast to the space components A*(x). It is at this point that we
sacrifice manifest covariance and continue with the canonical form of
the quantization procedure. In this choice we are armed with the con-
viction that our starting point, the Maxwell theory, is Lorentz covariant.
Although we shall encounter along the way many expressions which are
neither Lorentz nor gauge invariant, we shall find at the end that the
physical results, namely, transition amplitudes (S-matrix elements), are
Lorentz covariant and independent of gauge.

For the equal-time commutators between the potentials A4;(x’,t)
and the conjugate momenta 7*(x,t) we are led by the canonical pro-
cedure to write?

[ri(x,0),4;(x' )] = —[Ei(x,1),47(x"}})] = —i8;6°(x — x) (14.14)

However, we must now depart from the straight canonical path because
(14.14) is not consistent with the Maxwell equations. Gauss’s law

V-E=0

contains no time derivatives and is a constraint on the electric field.
Consequently, the divergence with respect to x of the left-hand side of
(14.14) vanishes, which is not true for the § function on the right-hand
side, however. Going into momentum space we see that

NN ... Jy— 14.15
izléaaija(x—x)_z ol ; (14.15)

1 As defined in Eqs. (14.10) and (14.11), =* is conjugate to A; = —A¢¥.
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To remove the divergence of 5;;62(x — x’), we modify its momentum
space expansion by adding on a term proportional to k;. This term
must then be proportional to k:k;, the only other tensor, aside from &;;,
at our disposal. The coefficient of kik; is determined uniquely from the
condition that the divergence vanish, and we obtain the divergenceless,
or transverse, ‘6 function” by the modification

B ik
@y O (ai,- - k—;) (14.16)

The commutator condition (14.14) is then replaced by

3;0%(x — x') — 85(x — x') =

[ri(x, ), 41, 0)] = +isti(x — x) (14.17)

Notice that this requires V - A to commute with all operators, since the
divergence with respect to x’ of the right-hand side of (14.17) vanishes.
That V- A is a ¢ number already follows from the definition of E in
terms of A and ® and from Gauss’s law

0=V:-E= -V —V.A (14.18)

Since @ is already known to be a ¢ number, V - A must also be—except
possibly for the zero-frequency mode.

Thus the longitudinal part of A (in Fourier space, the component
of A parallel to the wave vector) and the scalar potential are really not
dynamical degrees of freedom. In fact, by an appropriate choice of
gauge, V - A as well as ® may be set to zero. We carry out this gauge
transformation in two steps. First make the transformation

’ a 7 /
4= A, - o [fe) at (14.19)

which removes the scalar potential.
To remove the longitudinal potential, we seek a A(z) such that

0=V-A"=V-A" 4+ ViA(x)
Thus the choice

— dax, ! ’ /

removes the longitudinal potential, and as a consequence of (14.18)
and the vanishing of &,

oA

—_— = /= / =
3 0 and @ ¥ =0
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14.3

This gauge, for which
=0 V-A=0 (14.20)

is known as the radiation gauge; hereafter, we shall work in this gauge,
although we lose manifest Lorentz and gauge convariance. It has the
advantage that only the two transverse degrees of freedom of the
radiation field appear in the formalism.

Covariance of the Quantization Procedure

Before accepting this modified quantization procedure as satisfactory,
it is necessary to verify that with the commutation relations (14.13)
and (14.17) the theory remains invariant under coordinate displace-
ments and spatial rotations. The only effect of a Lorentz transforma-
tion should be a change of gauge.

Translational invariance is assured by verifying (11.70) with P,
given by Noether’s theorem (11.49)

po = =%[d3x:E2+Bzz=%[d3x:A2+(VxA)2:
3
P= | d2c:ExB: =— | dx (AVA;: (14.21)
/ [,

where the dots denote normal ordering as in the Klein-Gordon theory -
Similarly, to check invariance under spatial rotations, we verify (11.73)
for the spatial components ¢, j = 1, 2, 3 with M*% given by (11.57):

3

.. : .0 . d PO s

1 = 3y . r e _— A 7 — %) .
M / &z : ,ZIA (x 5 = 6xi)A (Aidi — Aid%):  (14.22)
and with Zi = gingd — gig’ (14.23)

according to (11.54). Finally, a transformation between Lorentz
frames in relative motion is generated by

3 r k .
Mok = /d% :[xo 2 Argfk -+ xA)2)]: (14.24)
r=1

Actually, under a Lorentz transformation 4, does not transform as
a four-vector but is supplemented by an additional gauge term.!

! Despite this, we shall continue to denote the transformation generated by
(14.24) a Lorentz transformation.
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Under an infinitesimal Lorentz transformation generated by M9
according to (11.72) and (11.73) we find that!

oA (x ,€)

U(e)A*(2) U~ Y(e) = An(z’) — ¢*A,(2") + —=— (14.25)

with A(2’,¢) an operator gauge function. It is clear that such a gauge
term is necessary, since if

®(x) = Ao(z) =0
it follows that
Ud(x)U-1=0 (14.26)

for any unitary transformation U. The structure of (14.25) guarantees
that the gauge-invariant Maxwell equations are Lorentz covariant.
The only additional requirements are that

VA =0 (14.27)

and that the equal-time commutation relations (14.13) and (14.17) be
valid also in the transformed frame. These relations may be verified
explicitly. Thus two observers O and O’ in relative motion who con-
struct in their respective frames a quantum electrodynamics in radia-
tion gauge are assured of a unitary transformation relating the states
of O and O'.

The nontrivial calculations verifying (14.21) to (14.27) as well as
the establishing of the covariance of the equal-time commutation rela-
tions are left as exercises for the reader.

14.4 Momentum Expansions

Expanding the potentials in plane waves and imposing the commuta-
tion relations (14.13) and (14.17) leads, as in the Klein-Gordon theory,
to the interpretation of the expansion coefficients as creation and
annihilation operators. The new feature for the Maxwell theory is
that these quanta carry a unit of spin.

In the radiation gauge A(x,t) is transverse and in the plane-wave
expansion

e(k\) A (k) 0)et (14.28)

>
.l-l.MN

Aw) = [ a%
18ee Prob. 2.
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e«(-k1)

/' (—k,2)
6( ,1
/ Y-k

Fig. 14.1 Polarization unit vectors for photons of momentum k and —k.

,w

the two unit vectors e(k,\) for each k and for N\ = 1, 2 are orthogonal
tok
e(k\) - k=0 (14.29)

in order that V- A = 0. They may also be conveniently chosen to be
orthogonal to each other, for each k,

e(k,\) < e(B\) = o (14.30)

Then ¢(k,1), e(,2), and k =k/ |k| form a three-dimensional orthogonal
basis system as shown in Fig. 14.1. We also adopt the convention that

e(—k1) = —e(k,1) e(—k2) = +ek,2) (14.31)
as illustrated. By (14.30), this implies
e(k,\) - e(—k\) = (=)o (14.32)

From the Maxwell equations, it follows that A(z) in radiation
gauge also satisfies the wave equation

OA=0

and we can make the expansion

2
— ~1k-z + ik
Ax,) [ \/2 (27r)3 AEI (k) [alk\)e=*= + at (k,\)e#?] (1433)
with ko = w = |K| and k2 =1Fkk=0

In the same manner as used in the Klein-Gordon theory, we may
invert (14.33) for the amplitudes a(k,\). Using (14.30) and (14.32),
we obtain first

I / d3x e zg(k\) - A(x) = \/ (2

la(k)) + (—)at(—k,N)e*™]
(21r)

t [ dz e®=e(k,\) - A(z) = 2lak\) — (=) at(—k\)e]
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and then
d’z e*=

W = [ sty

ikz >
= i/ _dlr et dee(k,N) - A(z)

e(k\) - [0A(2) + iA(2)]

Vv 2w(2r)?
akn) = —i [ %?@(k,x) - A(2) (14.34)

Computing next the commutation relations for a(k,\) and a'(k,\)
from (14.13) and (14.17), we find, for example,

la(k,\),af (K',\)]

de d3x’ ei(k~x—k'-z’) ,
= — (k) e (K \)ot(x — x/
/ 2(27)* v wo’ (Wt i,j-zl,2,3 A )

Carrying out the integrals with the help of (14.16) and using the orthog-
onality relations (14.30 and (14.32) on the polarization vectors, we
find

[a(kN),at(K'\)] = 8%(k — K)o (14.35)
In the same manner we also find
[a(k,N),a(k',\)] = [af(k,\),at (k' \)] = O (14.36)

The expansion coefficients for the two transverse dynamically
independent components of the vector potential are thus quantized
with the same commutation relations as in the Klein-Gordon theory.
We may interpret the af(k,\) and a(k,\) as creation and destruction
operators of energy w and momentum k upon observing that the
hamiltonian (14.12) may be written in the momentum representation
with the help of (14.3), (14.21), and (14.33) as

2
H= [ 2@+ BY: = [ako Y ateNaky (1437

A=1

Similarly, for the total momentum
2
P=[duw:ExB = [dkk ) a'(kNak)) (1438)
r=1

The vacuum state ®,, that is, the state of lowest energy, is an
eigenstate of H and P with eigenvalues zero and satisfies

a(k,\)®o = 0 (14.39)
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14.5

in complete analogy with (12.17) for the Klein-Gordon theory. The
interpretation of af(k,\) as a creation operator for a photon of four-
momentum k,, with k2 = k,k* = 0, is clear if we form the state

P = a'f(k,)\)% = a’f(k,)\)lO) (1440)
and compute

2
Piby = [k B Y otk V)a(k'N)al (k))0)
M=1

= k"q)l,k)\ (14.41)

Spin of the Photon

Photons differ from the Klein-Gordon quanta in several ways. Since
they satisfy the Einstein condition k.k* = 0, they have zero rest mass.
In addition, the vector potential A(z) is real and upon quantization
becomes a hermitian operator, so that photons carry no charge but are
similar to the neutral mesons which emerge from quantizing the real
Klein-Gordon theory. A new feature is the polarization vector e(k,\),
which labels each photon and which is associated with the spin angular
momentum. In particular, the vector character of A leads to photons
of unit spin, while the constraint of transversality removes one degree
of freedom. The projection of spin angular momentum along the
direction of propagation cannot be zero but only +1. To show this, we
use the angular-momentum operator (14.22) and compute the three-
component of angular momentum of a one-photon state

Md, 4 = [M2,at(k,\)]|0) (14.42)

whose wave vector is along the 3-axis, that is, k'z = w(t — 2%). M2
consists of two terms, the first of which can be identified as the orbital
angular momentum. Its projection along the direction of motion
must vanish, as may be verified directly by computing the commutator.
There remains only the contribution of the spin terms, which yield
with the help of (14.22) and (14.33)

dsx e—ik~z

S [e1(k,\)90A2(x) — €2(k,\) 904 1(2)]

(14.43)

ERIGVES]

Using (14.34) and Fig. 14.1, this is just
(M2 gt (k)] = tel(k,N)at (k,2) — 1e2(k,N\)at (k1) (14.44)
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By forming the linear combinations
ah(k) = \/— [a' (k,1) + 70" (k,2)]
af.(k) = \/_ lat(k,1) — dat(k,2)] (14.45)

representing right- and left-handed circularly polarized waves, respec-
tively, we find

[(M2ah (k)] = +ah(k)  [M2al(k)] = —al(k)  (14.46)

which shows that a right-circularly polarized photon carries spin 1
along its direction of propagation.

The Feynman Propagator for Transverse Photons

In order to study the space-time evolution of a state of one transversely
polarized photon, we construct the Feynman propagator. In analogy
with the discussion of Sec. 12.6, for Klein-Gordon quanta, we form the
amplitude for a transverse photon, created with polarization projec-
tion u at z, to propagate forward in time to 2’ and be destroyed with
projection »:

(04, Au@)|0)0¢" — 1) (14.47)

For t > t' we form the amplitude for the photon created at 2’ with
projection » to be destroyed at x with projection u.

(0]4,(x)A4,(z")|0)8¢t — t) (14.48)
The sum of (14.47) and (14.48) defines the Feynman propagator
iDF ('), = (0]4,(2")4,(2)|0)8(" — ) + (0|Au(2)A,(z")|0)8Ct — t')
= (0|T(4.(z")A.(2))|0) (14.49)

where T is the time-ordering operator introduced in (12.72) and {13.71).
We construct the explicit form of D¥%(z',x),, by expanding the
fields in plane waves:

Dy (' @) om

= =i [52EL Y et kN — D@2 + o6 — D)ei-2)]
2umy 4 @M ek
' (14.50)
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In radiation gauge ¢, (k,\) has no time component, that is,
6'(’0,)\) = (O,c(k,k))

and the transversality condition depends only upon the orientation of
the space vector k and not on the frequency w. In the reference system
with this gauge we may imitate our earlier propagator discussions and
write the Feynman propagator in the form of a four-dimensional
integral
D o[ A ek 14.51
@ — 2w = (2—,,)4702—4_;2-:1 e, (kMeu(k,N)  (14.51)
This Feynman propagator, reminiscent of that encountered first in
Chap. 6, and again in Chap. 12, will occur frequently in subsequent
calculations. As expressed in (14.51) it is not Lorentz covariant, since
the ¢,(k,\) are specified with space components only in a particular
Lorentz frame. In order to separate out the coordinate dependence
explicitly, we introduce a time-like unit vector »* = (1,0,0,0) in the
frame in which we have carried out the quantization. For a given k*,
a quartet of independent orthogonal unit vectors is completed by

introducing
k* — (k=n)n*
E“ = D) 14,52
Vien) — =2 (14:52)
to join e#(k,1), e*(k,2), and 9. We may then write
2
Y @lNGtN = =g + mns — ki
a1
— — kvkll (k.ﬂ) (krnn + nvkn) _ kzﬂvﬂn
Gou en)? — k2 + (kn)? — k2 (n)? — k2 (14.53)

Introducing (14.53) into (14.51) gives
Dy’ — @) = guDr(a’ — 2)

_ dk e* =2 g n — (k) (ke + nks) + koK,
()¢ (k2 + 7e) (k) — &2 (14.54)

In (14.54), the first term

gthF(x, - x) = lim ("gm)AF(x, -z, m)
m2—0

is just the Feynman propagator used extensively in the calculations of
electromagnetic interactions in Chaps. 7, 8, and 9. Ap(z’ — z, m) is
the propagator of a spin-0 boson as encountered in Chap. 9.
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All dependence of D¥,, upon the », is in the second term of (14.54).
In the calculations of physical amplitudes in field theory, as the dis-
cussions of the following chapters show, the propagator D¥(z’ — z),,
always finds itself sandwiched between conserved currents which are
the source of the electromagnetic field. The terms proportional to k,
or k, in (14.54) will then vanish as a result of current conservation, as
discussed above (7.61) and further illustrated in discussing vacuum
polarization (8.9). The remaining n-dependent term in (14.54) is then

d'k e == —guoguod(t’ — 1)
- [y G = Tt (459
in the special coordinate system with »* = (1,0,0,0). This has the
form of the familiar static Coulomb interaction between two charges.
In computing the total interaction between two charges at space-time
points z and z’, (14.55) is canceled by the Coulomb interaction, which
exists in addition to that carried by the pure radiation field. The
effective propagator reduces to the Lorentz-covariant first term of
(14.54).

This rule, which will be proved in detail in Chap. 17 for general
S-matrix elements, restores manifest Lorentz covariance and gauge
invariance to the formalism where it is really needed—in the physical
scattering amplitudes. The additional gauge-dependent terms in
D% (2’ — z),, contribute to unobservable quantities such as the
renormalization constants Z, and Z, encountered in Chap. 8, which are
not gauge invariant. Their appearance in D¥,, is the price it is neces-
sary to pay in order to quantize the Maxwell field within the canonical
framework. These unpleasant terms all disappear, however, when we
compute transition rates and cross sections for comparison with
experiment.

Problems

1. Compute the commutation relations between field strengths and verify that
they vanish for space-like intervals.

Answer: [Bi(z"),Bi(z)] = [auv’-v - a—‘},%] iD(z' — x)
i i
3
(Bi(2'),B(z)] = — - z e =2 iD(z’ — o)
k) 27 ’ 63:3 A, "kax"

(Bi(z),Ei(z)) = (5—9—— -9 9 ) iD(z' — 7)

‘1 9z0 xy  Oxt dxi’
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2. Verify the energy-momentum and angular-momentum operators constructed in
(14.21), (14.22), and (14.24). Verify the transformation of the potentials given in
(14.25) for a Lorentz transformation and construct A(z’,e) and U(e) explicitly.
Complete the proof of covariance of the Maxwell theory quantized in the radiation
gauge by establishing (14.27) and the covariance of the equal-time commutators.
If ey = €0k
IA(z'\€) 9 diz  9A*
o, = "°°’°a_xZ f 47]x — X'| 9%o

By explicit calculation show that M;; and M« commute with H.

3. Starting with the Maxwell lagrangian, with a (noncovariant) “photon mass”
term —A2A2(z) added for later convenience (A2 small), quantize the electromagnetic
field using only the subsidiary condition A, = 0. First construct the hamiltonian
and show from the Hamilton equations

Z_f" = 4, g;% = —qk
that as A — 0 one obtains Maxwell’s equations, with the possible exception of an
extra zero-frequency contribution to Gauss’s law:
V.E=—v-A@x =NV-A®2)
Impose canonical commutation relations, for example,
ifwk(x,0),A (x',0)] = 8;8%(x — x')

and quantize the longitudinal as well as transverse modes. Show in particular
that the dispersion law for these quanta is w? = A2

4. (a) Solve Maxwell’s equations within a volume bounded by two infinite parallel
conducting plates separated by distance a. Quantize the electromagnetic field in
this region, with due regard to the boundary conditions.

(b) Calculate the zero-point energy per unit area E,, using a cutoff depending
only upon frequency, and show that

™ hC B4
Ey = Cia + C: +F—4—!
where C; and C: are cutoff-dependent quantities and By = —14¢ is the fourth

Bernoulli number.

(¢) Show that the force between the (neutral) plates comes from the last term
only, and calculate its magnitude. [H. Casimir, Koninkl. Ned. Akad. Wetenschap.,
Proc., Ser. B, 793 (1948); M. Fierz, Helv. Phys. Acta, 383, 855 (1960).]
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15.1 Introduction

A theory of free fields alone has no physical content. The nature of the
physical world is revealed to us only through the interactions between
fields, to which we now turn.

In constructing general interactions, we shall be motivated by
analogy with the electromagnetic field, and we shall first discuss the
electromagnetic interactions of a charged particle from the point of
view of second quantization.

For nonelectromagnetic interactions, the best clues to the structure
of the coupling terms come from experimental observation of various
conservation laws. These may be built into the theory by requiring
the lagrangian to possess certain symmetries; in particular for each
continuous symmetry transformation the Noether theorem of Chap. 11
automatically produces a conserved quantity.

15.2 The Electrodynamic Interaction

We adopted in all our earlier discussions the ‘“minimal”’ substitution
D Du — €4, (15.1)

corresponding to the classical interaction of a point charge, as the
prescription for introducing electrodynamic couplings. We may
preserve this classical correspondence by imitating our earlier prescrip-
tion and introducing (15.1) into the lagrangian density for the electron
and photon fields, which becomes

£@) = V@)@V — eeh (2) — mop () — WF.(@)F» () (15.2)

The lagrangian density (15.2) describes the local interaction of the
electron and photon fields at the same point 2. From it we deduce the
coupled electron-photon field equations by independent variation with
respect to the electron and photon field amplitudes

(Y — mo¥ (@) = eody(x) (15.3a)
WD — eb@rrvia) (15.30)

The first equation has the same form as in our earlier study of the one-
particle theory. Now, however, the field A,(x) is not taken to be
externally prescribed but is included in our dynamical system, since it
is coupled back to the electron current in (15.3b). In turn, this

84
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electron current is constructed by solving (15.3a) for the motion under
the influence of the field 4,.

It is evident from (15.3) that in discussing the coupling between
two fields we are up against a nonlinear problem of vast complexity.
Even classically this is the case, as found in the study of radiation
damping and the runaway solutions for the motions of classical charges
under the influence of their own as well as each other’s fields.! The
quantum-mechanical problem certainly is not easier.

The coupling of the fields in (15.3) is already implicit in the calcu-
lations of electron-electron scattering, Compton scattering, and electron
self-energy in Chaps. 7 and 8. For electron-electron scattering, we
computed the motions of two charges under the influence of each other’s
fields. For Compton scattering we found the modification of the
radiation field in the presence of an electron. For the self-energy
problem we considered the interaction of the electron with the field 4,
produced by itself.

If we wish to compute the motions of electrons under the influence
of an applied external electromagnetic field in addition to the radiation
field, we need only add the potential for the applied field A;"(z) in
(15.1). This leads to the field equations

(@Y — mo(x) = el A(z) + A=t(x)ly(x)
OF (@) _ 0 (@) (a)

axr’

(15.4)

In writing the lagrangian and field equations for the coupled fields
we have appended subscripts to the mass mo and charge eo, in anticipa-
tion that these will not be the physically observable values m and e for
the mass and charge. Indeed, we have already found that m, and e
are altered when we made the perturbation theory calculations in
Chap. 8. There we found that to lowest order in e the corrections to
the mass and charge were both logarithmically divergent. We do not
enter here into the discussion of whether these renormalization constants
mo — m and Z3', if calculated exactly, would also be infinite. It is
important to realize that the necessity of renormalization is in no way
connected with the magnitude of the renormalization constants. How-
ever, because of the difficulties encountered in perturbation theory, we
must proceed with utmost caution to isolate the divergences unam-
biguously from finite observable physical magnitudes. In fact, the
great progress since 1948 has been that quantum electrodynamics has
achieved a status of peaceful coexistence with its divergences so that

1 See, for example, P. A. M. Dirac, Proc. Roy. Soc. (London), A167, 148 (1938),
and G. N. Plass, Rev. Mod. Phys., 88, 37 (1961).
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the finite physical amplitudes can be calculated to any desired order of
accuracy, as limited in practice only by the labor involved.?

In order to extend the formalism from the classical to the quantum
domain, we first identify the canonical momenta in order that the
equal-time commutation relations may be written down. The inter-
action term introduced into the lagrangian (15.2) at the suggestion of
classical correspondence

Line = —ea(@)7,¥(2) A4 (2) (15.5)

contains no time derivatives of the fields. The canonical momenta
are then unchanged from the free-field expressions and are given by
(13.43) and (14.10) if we stay in the radiation, or Coulomb, gauge

V:-A=0 (15.6)

as employed in Chap. 14. In this gauge the scalar potential no longer
vanishes; from Gauss’s law and (15.6)

V-E@) = =V A(x) — V2@(2) = —V23(2) = e (@)¢(x) %0 (15.7)

The scalar potential, however, is still not an independent dynamical
variable, but is determined by the instantaneous charge distribution

p(x,t) = ¢ (x,O)¢¥(x,t)

Adet) = B(xt) = oo [ TELEOED _ [ LW (15)

Since the independent variables are the same as those in the free-
field theories, we adopt the same canonical commutation relations as in

(13.53), (13.54), (14.13), and (14.17):

Va(x) WAE D)} = 8a0%(x — X)

{\0:!(x’t))¢ﬁ(x,>t)} = {¢l(x’t)’¢;(x’xt)} =0

[A:x0),A;(x' )] = —idii(x — %) 4,j=1,2,3

[4:(x,0),4;(x',1)] = [A:(x,1),4;(x',))] = 0 (15.9)
To complete the set, we impose vanishing equal-time commutation
relations between the Dirac and Maxwell fields:

Wax,0),4:xD] =0  [Ya(x,t),4:x',1)] = 0 (15.10)

We make this choice because the ¥, and A; are independent canonical
variables. As we have remarked, the scalar potential & is not an inde-
pendent variable, but is determined from y by (15.8). It therefore

1]. Schwinger, Quantum Electrodynamics, Dover Publications, Inc., New York,
1958.
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satisfies the commutation relations
[®(x,8),4:(x",0)] = [®(x,0),4.(x,))] = 0

[2(x,0) ¥a(x'1)] = — 471?6-0?'{'1 e (15.11)

Passing to the hamiltonian by means of the canonical prescription,
we find by repeating the same steps as in the free-field discussions

3 = —¢ ¢ +— aAk Ly (15.12)

which leads to

3 = yt(—ia-V + Bmo)y + Y5(E?* + B?) + E - VP + ey YA+
(15.13)
The hamiltonian is then

H = / diz 3¢ = / dix {\V’(x) [ (— - eoA) + Bmo] ¥(x)
+ LB + Bz(x)]} (15.14)

where we have partially integrated the E - V& term to —eoty®, drop-
ping the inessential surface term.!

In this form H is at first sight somewhat surprising, since it
reveals explicitly only a coupling of the electron current with the
transverse vector potential. What has happened to the electrostatic

1 The problems faced in building a quantum theory of the coupled electro-
magnetic and charged Klein-Gordon fields are similar to those already encountered
in this chapter for photons and electrons and will not be repeated here. (G.
Wentzel, “Quantum Theory of Fields,”” Interscience Publishers, Inc., New York,
1949.) Indeed, they appear with a vengeance, since the coupling prescription (15.1)
introduces interaction terms containing derivatives. The lagrangian density is

= [(& - i) | (40 ] =i

= [G2) GB) - oo = g | + [ e, (2-(2))

+ e?p*pA A ']

Since the second, or interaction, term in £ contains derivatives, the canonical
momenta for the Klein-Gordon field are changed to
oL .
T = 3‘; 4]’* - 1evo¢*
N

1]
¥

k3

= ¢ + tecdop
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interaction between charges? Actually, it is contained in the electric
field energy term 14 [E? d3z.
To display it, we decompose E in terms of its longitudinal and

transverse parts
E=E+E E=-v& E=-A (15.15)
The total field energy then separates into two terms
Y4/ d*x (E* + B?) = 15[ d*x E} + 15[ d°x (E} + B?) (15.16)

where the cross term E,; - E, vanishes by another integration by parts.
The first term on the right of (15.16) is the total energy associated with
the Coulomb field. Using Gauss’s law to express it in terms of the

charges gives
l_ 2 J3p — eg 3 3 \bt (x)t)¢(x)t)¢t(y¢)¢(y’t)
Q/E,dx—gw/dxdy Ix — y]
_ € [ s 2 PEDR(,D)
N Sr[dxdy Ix — vl
The second term in (15.16) is the energy of the transverse radiation
field coupled to the current j = ytay, and it has the same structure
as the free-field energy.

15.3 Lorentz and Displacement Invariance

The canonical procedure has given us the energy operator H in (15.14).
The momentum operator is found in the same way to be

P = [d% (—@'vy + E, X B) (15.17)

This coincides with the sum of the free-field momentum operators,
(13.46) and (14.21), since the interaction contains no derivatives.
The Heisenberg relations,
dA*(x)
ox+

(Poy@)] = —i 2B (p k)] = —i (15.18)

axt
required for a translationally invariant theory, may be verified from
the commutation relations (15.9) and (15.10) and from the field equa-
tions (15.3). The commutator relations and field equations thus form
a mutually consistent set of equations on which to base our theory.
To verify Lorentz invariance, we turn to the angular-momentum
tensor which may be constructed from the Noether preseription (11.56)
and (11.57). The space components M (3, j = 1, 2, 3) are just the
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sum of the free-particle angular-momentum tensors. Since the com-
mutation relations are also unchanged from the free-particle theory, it
follows that the relations (11.72) and (11.73) for three-dimensional
rotations are preserved. The interaction introduces additional terms
into the generators M% (k = 1, 2, 3) of Lorentz transformations to
moving systems. We write

Mo = P~ [ d [x"ﬁ(:(x) - §¢(x)yk¢(x)] (15.19)

with 3¢ the hamiltonian density of (15.13). Under an infinitesimal
Lorentz transformation generated by M%, according to (11.72), we
again find that the electromagnetic potentials,

Ar(x) = (2(2),A(2))

undergo a gauge transformation required to restore the transverse
gauge in the new coordinate system.! As in (14.25) for the free field,

we have
U()AH@)U-1(e) = A(z) — A, (&) + %ﬁ‘)
with?
— E*(y) + ep(y) (y* — 2¥)
A(z,€) = en / d?y Tnlx — ] (15.20)

The Dirac operator ¢(x) undergoes a phase transformation in addition
to the Lorentz transformation,

U(ey(@) U= (e) = [1 — deoA(x,€)]S; ()¢s(z’) (15.21)

This phase transformation is just the one required for the field equa-
tions to transform covariantly under U; for example,

V(¥ @Y — e @)W @ U = F@)iVa — e (@)W ()

In order to check the Lorentz invariance of the quantum field
theory formalism completely, it is also necessary to verify the invariance
of the equal-time commutation relations® (15.9) and (15.10).

The details of these calculations are tedious and not completely
trivial; they are left as exercises for the reader. We do not enter into

1B. Zumino, J. Math Phys., 1, 1 (1960).

2 In constructing this form, the total differential v - (E®) was removed from
3 in (15.13), while the term E; - E; = Vv - (A®) was not.

3We cannot explicitly write covariant expressions for the commutators for
time-like separations, as was possible for free fields, since we do not know the exact
solutions of the equations of motion.
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them here, assured that our prescription (15.1) has preserved gauge
invariance and confident that the physical results are relativistically
covariant even though we have chosen to quantize in a special gauge.

15.4 Momentum Expansions

The free-field momentum expansion (13.50) and (14.33) for ¢(x) and
A(z) must be modified in the presence of their interactions, since the
fields no longer have the space-time coordinate dependence as solutions
of free-wave equations. Indeed, lacking exact solutions of the coupled
field equations (15.3), we do not know their complete coordinate
development. In this situation it is convenient to make a three-
dimensional Fourier expansion of their x dependence for a particular
time, usually taken to be ¢ = 0, and to describe their time development
by the Heisenberg equations (15.18). We write then by formally
integrating (15.18):

Y(x,t) = B4 (x,0)eH? A(x,l) = eHtA(x,0)e—Ht  (15.22)

and expand, as in (13.50) and (14.33), in a complete set of free-wave
solutions:

V0 = z / (@)% \/-EﬁT [b(p,s)u(p,s)et®* + di(p,s)v(p,s)e~*]
pxt = z / @) \/- (b7 (p,9)u(p,8)voe~?* + d(p,8)5(p,5)Yoe*7]

2
A(X 0) z e(k,)\)[a(k,)\)e“k" + aT(k,)\)e_ik“]

/\/2 (2m)*

2
A@x0) = 2 (kN la(k\es — af (ko]

(15.23)

with B, = v/[p[2 + m?, » = |k|, and u(p,s) given by (13.51) and e(k,\)
by (14.29), ete. The operator expansion coefficients b(p,s), d(p,s),
a(k,N) and their hermitian conjugates are assigned the same commuta-
tion relations (13.52), (14.35), and (14.36) as for the free-field theory;
in addition

[a(k,N\),b(p,s)]

= [a'(k,0),0(p,9)] = [a(k,),d(p,)] = [a'(k,N),d(p,s)] (15.24)
=0

/\/20)(2 )3
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This assures the canonical commutation relations, (15.9) and (15.10),
at ¢ = 0; and hence by (15.22) at all times ¢.

The fields with their time dependence removed are in the Schré-
dinger picture and coincide with the Heisenberg fields (15.22) at time
t=0.

The formal correspondence between the expansions given in (12.7),
(12.57), (13.50), and (14.33) for the free fields and the interacting ones
may be summarized by the relations

Free fields Interacting fields
a(k,\)e—t — eiHtq(k,\)e—iHt

af(k\)ett — eiHigh(k,\)e—iH! (15.25)
b(p,s)e—it — eillth(p,s)e—Ht

The operator expansion coefficients, however, no longer retain their
simple physical interpretations as creation and destruction operators
for single quanta of given definite masses as in (14.41), for instance, for
free photons.

15.5 The Self-energy of the Vacuumj; Normal Ordering

It is never hard to find trouble in field theory, and a difficulty already
appears here. If we take the vacuum expectation value of Gauss's
law (15.7), we see that

(OIV - E|0) = eo(O¥! @)¥()[0) = eo ), {0y (2)|n)?

where the sum is over a complete set of states. Thus even the vacuum
carries a charge density which is in fact badly divergent. The physical
origin of this charge is clear; it is just the infinite electrostatic charge of
the electrons in the negative-energy sea.

This unpleasant situation is easily circumvented. One changes
the theory by adding on a uniform external background charge of
opposite sign which neutralizes the vacuum. Formally, one does this
most conveniently by making the replacement in the preceding equa-
tions, including the Maxwell equations, of

V1 = Ll v (15.26)

that is, one antisymmetrizes the electric current under the interchange
of the Dirac fields, which amounts to subtracting an infinite ¢ number
from the operator current $v,¢. This change is also identical with
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normal-ordering the operators in the current. To see this, we refer
back to the fields (15.22) and their momentum expansions (15.23) and
observe that products of interacting field operators at a common time ¢
can be displaced in time to ¢ = 0 with the exponentials ¢i#t « « . g—iHt
factoring out. These operators obey the same algebra as for non-
interacting fields according to (15.24), and the normal ordering can be
defined precisely as given for the free-field case; for example

:b(p,9)dt(p’,s") + bt (p,s)b(p’,s") + d(p,s)at(k)N):
= _df(P’,S,)b(p;s) + bf(p)s)b(p,ys,) + a*(k;)\)d(?’;s)

This gives in (15.26)

Yl (@), v @)] = $(@)vd(2) — 35 {P(@), v (2)}
= J@)rb(@): + {¢(x)‘+),7»¢(x)(" } = @), 74 ()}
= Y(@)7¥(@): + 28°(0)guo — 28°(0)guo (15.27)

where the highly singular terms arising in the charge density with u = 0
are computed and observed to cancel out with the aid of the free-field
commutation relations as assigned to the a,b,d, etc. The superscripts
(+) and (—) in (15.27) denote the individual terms in (15.23) propor-
tional to a,b,d and a'pbt,d!, respectively. As illustrated in (15.25),
they reduce to the free-field annihilation and creation operators.

Although it is not yet clear that (15.26) or (15.27) removes the
background charge and neutralizes the vacuum, we may recall from the
discussion of the noninteracting Dirac field that the vacuum expecta-
tion value of a normal product does in fact vanish. When we come
later, in Sec. 15.12, to a study of the charge conjugation invariance of
quantum electrodynamics, we shall confirm the result

Of: ()7 (x):{0) = 0

as a consequence of this symmetry operation. For the present we
adopt it for j,, writing

H= / diz 50(z) = / dx Yt (@) [e - (—iV — eoA@)) + Bmod(x)

31A@? + (7 x A + 2 [ EETU 100 (50
(15.28)

We may furthermore subtract the vacuum expectation value from the
hamiltonian in order that energies shall be measured relative to the
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vacuum. This choice gives
(0lH|0) =0

and removes the need of discussing several embarrassing divergences.
The first is the zero-point energy of the field oscillators; for example,

(0lA@)]0) =

as discussed in connection with the Klein-Gordon theory (see (12.46)).
In addition, there is an additional divergence in the final term which
arises because the charge density :p(x): is an operator which does not
commute with H, although the total charge @ = [:p(x): d3x does:

@QH] =0

Consequently, there are fluctuations in the vacuum charge density and
a highly divergent Coulomb energy associated with these fluctuations.

The presence of these fluctuation energies of the vacuum raises the
question of its very existence. Because of the extreme complexity of
the coupled field equations, exact solutions are not available and indeed
it has not been possible to show from the formalism that the vacuum
state exists, that is, that there exists a lower bound to the energy
spectrum of the hamiltonian. However, it is not possible even to
begin constructing a sensible physical theory without appealing to the
experimental evidence that the vacuum does indeed exist. That this
question is nontrivial may be seen by considering a theory in which
antiparticles repel particles. It may possibly be energetically favora-
ble for pairs to be continually created, the energy required to do this
being provided by the change in potential energy as the particle and
antiparticle escape from each other.!

It is easy to determine the effect of our normal-ordering prescrip-
tion for H in (15.28), and the analogous normal ordering of P and M,,
in (15.17) and (15.19), on the discussion of Lorentz and displacement
invariance of quantum electrodynamics given in Sec. 15.3. All that
happens is that the resulting field equations appear in normal-ordered
form in place of (15.3):

@Y — mW(@) = e: Av(x): @)

3 = o V@ () (15.29)

Henceforth normal ordering shall be automatically understood to apply.
The vacuum subtraction is of no concern, since it amounts to no more
than removing a (possibly infinite) ¢ number from the definition of H.

1F. J. Dyson, Phys. Rev., 85, 631 (1952).
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15.6 Other Interactions

It is natural to extend the lagrangian formalism developed thus far to
treat the interactions of other particles, such as the mesons and nucleons.
A straightforward, albeit unimaginative, procedure is to associate with
each particle a field which obeys a wave equation consistent with its
known properties of spin, mass, and charge. The interactions of these
particles among themselves are then modeled after the interaction of
the Dirac or scalar particles with the electromagnetic field, and
assumed to be local and derivable from a lagrangian density. In
addition we require that the interactions be invariant under coordinate
displacements and under proper homogeneous Lorentz transformations;
that is, the lagrangian density is a scalar under proper Lorentz trans-
formations. If the interactions of some particles appear to be invariant
under improper symmetries such as parity, time reversal, or charge
conjugation, still further restrictions may be posed. Finally, the
conservation laws of nucleon number, lepton number, and electrical
charge, as well as the approximate laws of isotopic spin and strangeness
conservation, limit still further the form the interaction may take.

We use simplicity as a final although less physical guide in moti-
vating this development. This was done, for instance, in Chap. 10 in
discussing meson-nucleon scattering. There, in the charge-inde-
pendent approximation, the wave equations [(10.33) and (10.34)] were
constructed as

(@Y — M)V = goiys(z - ¥
(O + p0)d = —go¥iver¥

where the nucleon field has the isotopic components

v = [yo]

and the w-meson field, the components
oi(2) + ¢-—(x) ¢+(x) o—(z) )
@(x) ( \/2 '\/_2_ ’ ¢0(x)
These may now be derived from the lagrangian density
a a .
- 9y = 2% + 3| (2)- (32 -sae- 4] - dgstrer-4
(15.30)
by independent variations with respect to ¥(x) and §(x). We have
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again appended subscripts to the masses and coupling constants to
emphasize that these quantities are not to be identified directly with
observed masses and coupling parameters, but will be altered by
renormalization effects similar to those occurring in the interactions of
photons and electrons as shown in Chap. 8.

We observe at this point the ease with which satisfactory coupled
field equations may be derived from £. Replacing the tortuous argu-
ments of Chap. 10 regarding signs [for example (10.17), (10.19), (10.21),
(10.24)] is the statement that, as go— 0, £ reduces to the sum of
lagrangians for the free particles, the signs of which are determined by
the requirement of a positive definite free-particle hamiltonian density.
The coupling term in (15.30) is determined uniquely by the require-
ments that:

1. It contains no derivatives.

2. It is linear in the meson field and bilinear in the nucleon field
(implying vertices as drawn in Figs. 10.4 and 10.5)

3. It preserves the rotational invariance in isotopic spin space
satisfied by the free lagrangian.

We must emphasize again that the lagrangian (15.30) should be at
best regarded as a rough guess. Other interaction terms such as

L3y - “’”’ or @Y )"

might be present. The first term is unpopular because it leads to a
theory still divergent in perturbation theory after mass and coupling
constant renormalization. The second violates the ‘‘principle of
maximum simplicity”; if present, it would be in addition to the term in
(15.30) but not in place of it, since by itself it cannot lead to processes
with single meson production.!

One way of removing some of the singular behavior of a derivative
coupling theory at high energy is to introduce a form factor which
smears out the interaction, writing, for instance,

2@ = [ dat ¥ @renev@) - 2 pe - e - 9

This is Lorentz invariant and form invariant under displacements.
However, it is nonlocal, because local variations in the pion fields at z

1“Maximum simplicity” may, however, be subtle. For example, the
(“simple”) Einstein lagrangian for the gravitational field involves a square root
of the determinant of the metric tensor, and from the point of view discussed here
it is a mess.
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influence the nucleon field at other space-time points, which violates the
philosophy to which we have agreed in Chap. 11. In addition, it is
very awkward to work with such forms.!

The domain of more complicated interaction lagrangians is
virtually unexplored. There is as yet a lack of cogent physical motiva-
tion for choice of one over another. Such possibilities as above should
not be overlooked, however.

Before continuing, we stress that the method of introducing for
each particle in nature a separate field and a separate interaction term
is dubious and at best phenomenological in character. It is not clear
which of the particles in nature might be ‘“bound states’ or “‘excitations’”
of more fundamental fields.? In fact, the present trend of thinking is
to attempt to reformulate the theory without the use of the lagrangian,
retaining only the fundamental axioms of field theory. Instead of
introducing, via alagrangian, ‘‘bare’” particles which are then ‘“clothed,”
that is, gain structure owing to their interactions, one accepts the physi-
cal particles which exist and successively ‘“undresses” them by investi-
gating the structures which have the greatest spatial extent. There is
considerable optimism that such a program, which is also manifestly
phenomenological in approach, is essentially equivalent in physical
consequences to the lagrangian formalism.?

Symmetry Properties of Interactions

Experiment and simplicity are our main guides in constructing inter- -
actions. In writing lagrangians for physical systems we shall associate
a symmetry property of £ with each conservation law observed in the
laboratory. The conservation of energy, momentum, and angular
momentum was discussed from this point of view in Chap. 11, and the
lagrangians we write down will have this translational and Lorentz
invariance built in. In addition, the conservation of charge, nucleon
number, isotopic spin, etc., may also be associated with “internal”
symmetries of the lagrangian. As was demonstrated in Chap. 11
[see (11.58) and following], invariance of £ under a local transformation

1For some of the problems arising in nonlocal quantum field theories see
M. Chretien and R. E. Peierls, Proc. Roy. Soc. (London), A228, 468 (1954).

2 Although local fields may be constructed [K. Baumann, Z. Physik, 162, 448
(1958); K. Nishijima, Progr. Theoret. Phys. (Kyoto), 11, 995 (1958); and W. Zim-
mermann, Nuovo Cimento, 10, 567 (1958)] for composite particles, the wave equa-
tions they satisfy are undoubtedly quite complicated and the lagrangian formalism
awkward at best.

3 See, for example, G. F. Chew, Physics, 1, 77 (1964).



Interacting fields 97

of fields of the form
Qor(x) - ¢r(x) - ie)\rsﬁos(x) (15.31)

where ¢ is an infinitesimal parameter, leads to the conserved current

. 9L
T = = Sy ) M)

8J.(z) o (15.32)
oz,
and to the conserved ‘“charge”
Q= [duwi@ = =i [du LN
B¢-(z) (15.33)
99 _
a

In this way, for instance, we may find the electromagnetic current of a
charged particle. The lagrangian of the electron and photon is invari-
ant under the phase transformation

Y(@) > Y@) —defx)  Aux) > 4,@) (15.34)
leading to the conserved electromagnetic current according to (15.32),
@) = =i g Y@ = Y@IE  (1535)

with a similar result for a charged Klein-Gordon particle.

In making the transition to quantum mechanies, j,(z) becomes an
operator, and it is convenient to normal-order it! as in (15.26) and
(15.27); that is, ju(x) — @)y (x):. This does not change the
conservation law, since we are subtracting a constant number (perhaps
infinitely large) which has no space-time dependence

(017u(x)10) = (0le***ju(0)e="7#(0) = (0]3u(0)|0)

As is the case for P, and M,,, the conserved quantity @ in (15.33)
becomes the generator of the desired transformation. Forming the
unitary operator

Ue) = €2 = 1 + 7Q (15.36)

1 Henceforth the vacuum subtraction is always assumed to be made in dealing
with all conserved quantities.
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where e is an infinitesimal parameter and @ is hermitian, we find from
(15.31),
U(e)ga,(x)U‘l(e) = S"r(x) + ie[Q,go,-(x)]
= Qar(x) - ie)\raﬂoa(x) (15.37)
or [Q;‘Pr(x)] = —)\rs¢c(x)

in analogy with (11.69) and (11.70). In canonical field theory with
commutation relations (11.39), (15.37) gives

Q = —1f d*% 1w (X)Nuipu () : (15.38)

in agreement with (15.33). For theories quantized with anticommu-
tators we may again check that (15.38) is the generator of the desired
symmetry transformation provided A, couples together only Fermi
fields which satisfy one-time anticommutation relations:

{(Wia(®,0) WX 1)} = 8a58:i0%(x — X')
{Via(x,0) W 0} =0 (15.39)
{'I’it,a(x,t)y‘p},ﬂ(x,)t)} = 0

where o, B8 = 1, 2, 3, 4 denote the spinor components and 7, j = 1,
2, . . . denote different Fermi fields such as proton and neutron.

In the following developments we shall always require that differ-
ent Fermi fields anticommute, according to (15.39), instead of commute
with each other, that different Bose fields commute according to (11.39),
and that the Fermi fields commute with the Bose fields at equal times.!
For free-field theory this choice of commutation rules is merely a con-
vention of phases. However, for interacting fields one finds difficulty
even with the Heisenberg equations of motion without this choice of
anticommutators. For example, in our model (15.30) of the meson-
nucleon interaction, the hamiltonian is

H = [dz[¥(—ia-V + BM)¥ + Y5(=- = + V§- Vb + uih- §)
+ igo¥ysz - %] (15.40)
and the proton field equation is

(@Y — Mops(x) = igevs(vV/2 4 (2)¥n(@) + eo(@)¥5())

In order to verify the Heisenberg equation
.0
[H9,@) = —i 22

1 We depart from the canonical rules (11.39) for photons since the components
of the electromagnetic potential are not all independent. For these we use (15.9)
in the radiation gauge. There is no change in their commutation rules with other
fields.



Interacting fields 99

15.8

we must assume that ¥,(x,{) commutes with a bilinear form ¢! (x,f) - - -
¥a(x,t) and, as well,

{Wo(x,0), e+ (X D¥a(x,t)} = 0 (15.41)

Our choice of commutation relations meets these requirements, as is
readily seen. In addition, with this choice the commutation relations
(15.39) remain invariant under the transformation (15.37) and the
theory formulated in terms of the transformed fields

or(@) = U(e)er(@) U~(e) (15.42)

is unchanged from its original form in terms of the ¢.(x).

Strong Couplings of Pi Mesons and Nucleons

The most interesting applications of these symmetry considerations lie
in the realm of strong interactions. Beginning with the w-meson-
nucleon interactions, we notice that the model lagrangian (15.30) is
invariant under a simultaneous phase change of the neutron and proton
fields

V— ¥ — el (15.43)

This transformation corresponds to A,s = 8, (r,s = 1,2) in (15.37) and
leads to the conserved current, Eq. (15.32),

TV (@) = ¥n¥ = J2(@) + J5@) (15.44)
and to the constant (15.33)
N =[dzJ{@ = [d (¥ + ¥i¥n} = N, + N (15.45)

which we call the nucleon number. This conservation law has already
been found in (10.39) and (10.40). For a theory with no interactions,
N may be interpreted as the number of protons plus neutrons minus the
number of antiprotons plus antineutrons. When interactions are
turned on, it is no longer possible to compute exactly. However with
highly reasonable assumptions about the nature of the states of the
interacting system to be discussed on page 143, the same interpretation
of N may be made, provided, of course, it is still a constant of the
motion.

The model lagrangian (15.30) also has a symmetry operation
corresponding to charge conservation. In this transformation only the
charged particles undergo a common phase transformation which leaves
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£ in (15.30) invariant:

Vo ¥p — tedp

Yn— ¥n

P+ oy — legy (15.46)
o = ¢f = o + tep-

Yo ¢o

In isotopic notation this reads
¥ — ¥ — e (%) 0% 8 b — e(d X §o) (15.47)

where §o = (OO 1) as introduced in the isotopic spin formalism in
(10.36). The invariance of (15.30) under this transformation may be
verified explicitly and leads to the conserved electromagnetic current,
by (15.32) and (15.33),

Ju@) = ¥y, (1 42'”) v — (6* X @) b0 (15.48)

ox#
Q = [jo@) d°z = [ d°z [PL(@Ws(@) + 1@)62 () — 02(2)1(2)]

These coincide with the analogous expressions (10.37) and (10.38) of
our propagator discussions.

The invariance of the model £ of (15.30) under rotations in isotopic
space leads to the law of conservation of isotopic spin. We leave it as
an exercise to verify explicitly that (15.30) is invariant under the
rotation

Vo ¥ —delge -0 $2) > d(2) — «(b@) x §) (15.49)
with the § a set of unit vectors, §: = (1,0,0), $. = (0,1,0), $s = (0,0,1).
The conserved isotopic spin current inferred from (15.32) and (15.49) is

Ju(@) = 1L¥v,e¥ + (§ X a@) (15.50)

oz*
and the three components of the isotopic spin
I = [d*z [15¥T + (§ x §)] (15.51)

are constants of the motion. Once again these expressions coincide
with (10.43) and (10.44). Adding together (15.45) and the third
component of (15.51), we find, from (15.48), the relation

Q= % + 1, (15.52)

as also found in (10.41). We may also verify from (15.51) and the
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commutation rules that the components of I satisfy the angular momen-
tum commutation rules

[I;,1}] = <1 (15.53)

so that, as in our propagator discussion of Chap. 10, we may label
states by their eigenvalues of I; and of I2

By referring back to our model lagrangian (15.30), we have found
the symmetry operations (15.43), (15.47), and (15.49), corresponding
to laws of nucleon, charge, and isotopic spin conservation. Although
the model (15.30) is undoubtedly inadequate for describing the full
m-meson—nucleon interaction, when we attempt to develop more
general models for comparison with experiment we shall preserve
these and other symmetries as verified by observed selection rules.

Symmetries of Strange Particles

This use of symmetry requirements to ensure the existence of observed
constants of the motion is convenient when we introduce lagrangians
for the hyperons and K mesons which also participate in the strong
interactions. With the discovery that these particles occur in charge
multiplets and that certain selection rules govern their strong inter-
actions, it is natural to introduce lagrangians which admit symmetry
operations generated by the observed constants of the motion.

We denote by “strange particles” those in addition to leptons,
7 mesons, and nucleons which, in the absence of the weak interactions,
are stable.!

These are all illustrated in the energy level diagram in Fig. 15.1
(page 103). Asis customary, we have shown just the particles and not
the antiparticles in drawing the baryons (N, Z, A, E) and leptons
(u, e, v, ¥). Experiment, as always, provides the necessary clue to
which are the particles and which the antiparticles. Inthe present case
it is the observed rigorous conservation of the total number of baryons
minus antibaryons—and analogously for leptons—that fixes -, and
not its positively charged antiparticle Z- as the baryon in the classi-
fication of Fig. 15.1. For the mesons, both particles and antiparticles
are drawn in the figure. The =— and K~ are the oppositely charged
antiparticles of the =+ and K*. The #° is its own antiparticle; it
carries no charge. The K° on the other hand, is distinguishable

1 The 29, like the %, is included in this category although it decays electro-
magnetically (2°— A° + v); whereas the @~ and nuclei are not.
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from its antiparticle, the K°; for instance, the reaction

—+p—> A"+ K° (15.54a)
is observed, while
K'+p— A0+ 7t (15.54b)

is not.

With the exception of the Z° and E°, the spins of the baryons
have been measured to be one-half and the spin of the K has been
measured to be zero. Assuming spin 14 for all of the baryons, they
are described by Dirac equations with appropriate masses, in the
absence of interactions, and the = and K mesons are described by
Klein-Gordon equations.!

The multiplet structure of the mass levels in Fig. 15.1 strongly
suggests that the isotopic spin formalism developed for = mesons and
nucleons be used for strange particles also. Since all experimental
evidence thus far supports a law of isotopic spin conservation in the
strong interactions among mesons and baryons, it is useful to intro-
duce the isotopic spin formalism for them. We may then guarantee
conservation of isotopic spin by demanding that, in the absence of
electromagnetic corrections, the lagrangian be invariant under rota-
tions in isotopic space.

In isotopic space the Z field is described as a vector, similarly
to the = mesons in (15.30):

W) = <¢z+(x) J;E-(x)’ i[¢2+(x)\;§¢z-(x)], %.(x)) (15.55)

In a free-field theory ¢ z+(x) destroys a Z+ particle or creates an anti-=+,
whereas y3z-(z) destroys a Z— or creates an anti-Z—. Since hyperons
are distinguishable from antihyperons, that is, the =+ differs from
the anti-Z—, the field ¢z(z) is not hermitian, as was the corresponding
m-meson isotopic vector. The hermitian conjugate field to (15.55)
is given by

t t) —ileli(z) — ol
\l!'; (@) = (¢z+(x)\j'§¢z (x), Yz (32/ 5 ¥z (x)]’ ¢;.(x))

The A is described as a scalar in isotopic space and the cascade = and

1See M. Gell-Mann and Y. Ne’eman, ‘“The Eightfold Way,” W. A. Benjamin,
Inc., New York, 1965, for a discussion of theoretical schemes exploiting the sym-
metry among the eight baryons and mesons (including the »).
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Fig. 15.1 Energy level diagram for lowest lying
baryons, mesons, and leptons.

the K meson as isotopic spinors, similar to the nucleon:

Vz(z)

[

Px(r) = [«’m(x)]

Pxo (2)

(15.56)

(15.57)

With the above assignments the different fields transform under
an infinitesimal rotation about an arbitrary axis @ in isotopic space
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according to
%r d @r - fét X il

1€

Qx—)qi‘x - 2‘:°ﬁq>x
Uy — Uy — g‘c ATy (15.58)
Yr— ¥y

Y's— Py — W'y X i1

Vg — Uy — 3'25‘7"&\1/5
The conserved isotopic spin current deduced from (15.58) and (15.32)
or (15.37) is the sum of terms !
J.(x) = BVyy,a¥y + Lo Vayalz — Wy, X W

6@1 . GQK 6‘1)"
+ & X fryo + 157 ('I)k‘c T —ax—fe'bx) (15.59)

and the conserved total isotopic spin is
I = [Jo(x) d’x

These are the generalizations of (15.50) and (15.51) for nucleons and
7 mesons alone; for the three-component, in particular, we have

Iy = [ &% [Ys¥lv, — Youivn + Lovlapme — Yoybvz- + vhetpz — ¥ivs-
+ (01,02, — P2,01,)

+ Ysi(okrox+ — dkroxs — okotre + Ghooxs)] (15.60)

=3%(Ny—No+ Nz — Nz- + Nx+ — Ngo) + N3+ — Nz- + N

We again find that I has the commutation properties of an angular
momentum, (15.53), so that 75 and I? may be used simultaneously as
quantum numbers for states of the system.

Isotopic spin conservation is an approximate conservation law of
the strong interactions and is violated by electromagnetic corrections.
For example, the small mass differences among members of a given
multiplet in Fig. 15.1 are attributed to electromagnetic effects and are
neglected in writing a lagrangian in the charge-independent approxima-
tion for which (15.58) is a symmetry operation.

The nucleon number (15.45) is no longer conserved when we con-
sider strange-particle reactions, such as (15.54a). It is replaced, how-
ever, by an exact, or absolute, conservation law on the total baryon
number. That is, the total number of baryons minus antibaryons is
conserved in any reaction; or, in the language of Feynman graphs,

1This is true if there are no derivative coupling terms in £.



Interacting fields 105

Fig. 15.2 Processes conserving the total number of
baryons minus antibaryons.

baryon lines continue through interaction vertices, rather than origi-
nating or terminating at them, asillustrated in Fig. 15.2. This suggests
that £ be invariant under the simultaneous phase transformation of
the baryon fields
\I/N - \I/N - ie‘I/N
Vp— Wy — ie‘I/A
\Fz—) \Fz - ie‘l"z
Ve — ¥z — 16V

(15.61)

leading to the constant baryon number
B=NN+NA+N2+N5 (1562)

as a generalization of (15.45).

Finally, we associate the requirement that charge be conserved
with the invariance of £ under simultaneous phase transformations of
charged particles only, as in (15.47). Thus £ should be invariant under
the transformation, with 4; = (0, 0, 1) in isotopic space

%r_)ér - férxﬁa
P — dg — -142_6 (l + ‘rs)q?‘x

Uy — Uy — g (1 + 73) Ty

) 7% 7
W — Wy — eWs X G

Vi— ¥z — 5 (—1+ )%z

(15.63)



106

Relativistic quantum fields

leading to the constant

Q = [ &z Yoy + Vi — yivs- — ylya-
+ (@102, — ¢2,01,) + i(okrorr — Skrox+)]
=Np+N2+—N2-—N:-:-+N,++NK¢ (15.64)

The transformation (15.63) can be considered to be composed of a
rotation about the 3-axis in isotopic space, plus a phase transformation
of the K, N, and & particles given by

@K—@K—’z—e@x \I/N——>\I/N-—z'2£\I/N \pz—>wg+32f\1rg (15.65)

Since £ is invariant under rotations around the 3-axis in isotopic space,
leading to the constant (15.60), the transformation (15.65) must also be
a symmetry operation leading to conservation of what is called ‘‘hyper-
charge” Y:

Y =Nxg+ Ny — Nz (15.66)
Reealling (15.60) and (15.64), one finds the relation
Q=1 +1, (15.67)

Closely related to Y is the ‘“‘strangeness’” S defined by
S=Y-B (15.68)

where B is the baryon number (15.62); it must also be conserved in
strong interactions. Since the constants S, Y, B, I3, and @ are all
proportional to the number operators for the various particles, we may
assign a quantum number to each particle in terms of which to discuss
additive conservation laws. The accompanying table lists these
quantum numbers for the baryons and mesons; the quantum numbers
of the antibaryons are the negative of those of the baryons. The
conservation laws of hypercharge Y, Eq. (15.66), and of strangeness S,
Eq. (15.68), emerge solely as consequences of conservation of @, I3, and

Q I, B Y S
* 1,0, —1 1,0, —1 0 0 0
K 1,0 34, =% 0 1 1
A 0 0 1 0 -1
z 1,0, —1 1,0, —1 1 0 -1
= 0, —1 ¥, —%% 1 -1 -2
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B. They lead to the experimentally observed selection rule of asso-
ciated production; that is, a K meson, for example, can be produced
only in association with a A or 2, as in (15.54a), while (15.54b) violates
S or Y conservation by two units.!

We have so far considered only the strong interactions. If we
accept the minimal prescription

Pp— Pp — eAn

for introducing electromagnetic interactions, we still retain B, Y, and
S as constants of the motion, since the coupling is diagonal in baryon
number and hypercharge, or strangeness. Therefore, by (15.67), con-
servation of charge @ implies conservation of I;; that is, the electro-
magnetic interaction terms introduced into £ are invariant under rota-
tions about the 3-axis in isotopic space. However, the full symmetry
under rotations in isotopic space is destroyed by the electromagnetic
transitions such as photoproduction processes,

Y+p—op+a
—n+ 7t

which lead to final m-meson—nucleon states of both I = 14 and 34.

The weak interactions violate I; conservation and, therefore, by
(15.67) and (15.68), strangeness or hypercharge conservation as well.
These weak couplings account for the instability of the strange par-
ticles via, for instance,

Ko — gt + 7=

Only charge @ and baryon number B, along with the lepton numbers
L, and L, (see Prob. 15.22), remain as absolutely conserved quantum
numbers to the present limits of experimental tests.

15.10 Improper Symmetries

The symmetry operations considered so far have all been generated by
infinitesimal transformations. There are, in addition to these,
“improper,” or discrete, transformations which cannot be generated
by a succession of infinitesimal steps but which provide further useful
selection rules and information on the nature of interaction terms.
These are the space inversion or parity transformation @, the time-

1 A. Pais, Phys. Rev., 86, 633 (1952); M. Gell-Mann, Phys. Rev., 92, 833
(1953); K. Nishijima, Progr. Theoret. Phys. (Kyoto), 12, 107 (1954).
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reversal transformation 3, and the charge conjugation transformation
C.

Parity

To define the meaning of the parity transformation, we add to the
lagrangian density a term representing the interaction, generally
electromagnetic, of the quantum system with the measuring apparatus:

L= 8 — ju(@) AL (x) (15.69)

where AL (x) is to be treated as a classical prescribed external field
which interacts with the current operator j.(x) of the system. If we
invert the measuring apparatus, that is, consider a new physical system
for which the external fields applied in preparing and analyzing the
states of the system are given by

Ao(@) = (As(—%0,—Ax(—%) = A7(—x0)  (15.70)

the dynamics of the new system is the same as that of the original one,
provided parity is conserved. In particular, if the action

J = [diz[e — ju(2) Asre(®)]

of the new system is related to the action J of the original system by a
unitary transformation ®, the equations of motion are unchanged.
This is guaranteed if @ has the property

CL(x,t)P ! = £(—x,l) (15.71)
and, for the electromagnetic current,
(Pj,.(x,t)d"l = j"(—x,t) (1572)

In addition, ® must leave the commutation relations invariant, in
which case the new system and the original one satisfy identical
dynamical laws and we say that parity is conserved.

We first consider free-particle theories and construct explicitly
the operator @ for £ a free-particle lagrangian in (15.71). For the free
Klein-Gordon theory of Chap. 12 [see (12.2), (12.4), and (12.63)], the
condition

Co(x,0)0 ! = +o(—x,t) (15.73)

clearly satisfies (15.71) and (15.72) and leaves the commutation rela-
tions invariant.
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The choice of the + or — sign in (15.73) defines what is called the
“intrinsic parity’’ of the particle described by this field; the + sign is
chosen for scalar particles and the — sign for pseudoscalar ones like
the 7 meson appearing in (15.30). It is a specific rule of transforma-
tion of the field which creates the particle by operating on the vacuum
state

¢ (2)|0) (15.74)

and is determined when interactions are introduced between different
particles.! The intrinsic parity differs from the orbital parity asso-
ciated with the particle wave function in a state of given orbital
angular momentum. The wave function f;(x) for a particle formed
from the vacuum, by (15.74), in an angular-momentum state [, denoted
|n = 1; 1), has the property

L&Y = (n = 1;lex,]0) = (=)n = 1; le(—x,1)[0)
= (=) (=%t (15.75)

which is no more than a statement of the evenness or oddness of £:(z).
On the other hand, the parity of the state |n = 1; I) relative to the
vacuum which by convention is even, that is,

®|0) = |0) (15.76)
is found by considering

(n

I

1 Uel0) = (n = 1; [|Pe(x,)®0)
= £ (n = 1; lo(—x,1)|0)
= E (=) s

and is the product of the intrinsic parity, +, and the orbital parity,
(=) Thus a pseudoscalar = meson in a p state has even parity.

In terms of the momentum-space expansions, (12.7) or (12.57), the
parity transformation (15.73) satisfies?

Ca(k)®P~ = +a(—k) @a'(k)e-' = +al(—k) (15.78)

Acting on a momentum eigenstate, ® produces a new state with all
momenta k;, . . . , k, replaced by their negatives —k,, . . . , —k,
but with all other quantum numbers, such as charge or numbers of
particles, remaining unchanged.

1 An arbitrary phase ef# may be given in (15.73), but it is not discussed here for
lack of physical interest.

2 The transformation of k — —Fk in the argument of the creation and annjhila-
tion operators applies only to the direction of the space components of the momenta.
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Equations (15.73) or (15.78) determining @ are most readily solved
in momentum space. Introducing
® = e? (15.79)
we rewrite (15.78) as

Gat)6~ = alk) + ilP,a(k)] + & [P, [P,a(h)]
4o +ni'!'[P, L..Pa(®]]... ]+ - = —a(—k) (15.80)

where we have chosen the minus sign on the right-hand side for a
pseudoscalar field. This form suggests the choice

[P,a()] = 3 [ak) + a(~H)] (15.81)

with A and the sign to be determined. Then
[P,[P,a(k)]] = 24\ [a(k) + a(—F)]

and by (15.80),

®a(k)®! = a(k)

+%[z‘>\+%‘—!)—2 SR +(z%!):‘+ - '][a(k) * a(—k)]
= Ylak) F a(—k)] + }eMa(k) + a(—k)] (15.82)

Choosing the plus sign in (15.81) and setting N = =, we succeed in
solving (15.82) for a pseudoscalar field. From (15.81) we readily find
P,, to be!

P = —5 [ &k [at(®)a(k) + a'(a(-k)] = Pu!
and

®pe = €Xp ‘T“ / d*k [at (k)a(k) + a"(lc)a(-—k)]] (15.83)

For the scalar field one finds in the same way, by using a -+ sign on
the right-hand side of (15.80),

®, = exp {‘—2”-’ / d*k [at (k)a(k) — a*(k)a(—k)]} (15.84)

1 P. Federbush and M. Grisaru, Nuovo Cimento, 9, 1058 (1958). Notice that
P and @ are nonlocal operators in coordinate space, as is required in order to reflect
s particle at point x to point —x.
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The unitarity of @ is guaranteed by the hermiticity of P in (15.83) and
(15.84), and the convention (15.76) that the vacuum be an even-parity
eigenstate is guaranteed by the normal ordering of the operators in P.

For interacting fields, we can similarly construct a parity operator
@ which satisfies (15.73). We must then check to see whether (15.71)
and (15.72) remain valid so that ®, as a symmetry operator of the
theory, commutes with the hamiltonian

[®,H] =0 (15.85)

and is a constant of the motion.

In order to construct in general a @ satisfying (15.73), we first
construct a ®o which satisfies (15.73) at ¢ = 0. This is carried out just
as for the free fields, because, from (15.23), the expansion coefficients of
the interacting fields at ¢{ = 0 satisfy the same commutation algebra
as the free fields. Thus ®, is given by the free-field solution, (15.83)
or (15.84), with the expansion coefficients of the interacting field at
t = 0 replacing the free-field creation and destruction operators. To
obtain ®, one then uses the hamiltonian operator to displace in time.
That is, if

Pop(x,0)®5" = +¢(—x,0) (15.86)
then ®(t) = eHi@e ! (15.87)

satisfies (15.73) for a general time ¢{. If @ is a symmetry operation and
(15.85) is valid, we have immediately from (15.87) that

®(t) = ®0) = @

For the free Dirac field the fundamental conditions (15.71) and
(15.72) and the invariance of the commutation relations are satisfied
by the choice

CY(x, O = v (—x,t) (15.88)

That the Dirac equation is invariant under this parity transformation
is shown in (2.33); invariance of the anticommutators (13.53) and
(13.54) is readily verified. Again it is convenient to work directly in
terms of the expansion coefficients in constructing ® for a Dirac field,
and we write

3
%\J%E [b(p,5) 0~ u(p,s)e=Est+i# + Bd!(p,5) O~ 0(p,5) e+ iEt=127]
P'Fe

3.
- (gwi)’% VE%E [b(D,8)You(p,s)eEst== + dt(p,s)yov (p,s)etifst+ipa]
ts
(15.89)
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Changing p to —p and using the spinor properties
vou(—p8) = u@s)  vov(—ps) = —ov(ps)  (15.90)
in the right-hand side of (15.89) we obtain the conditions
®b(p,s)®* = b(—p,s) ®dt(p,s)® ! = —df(—p,s) (15.91)

with similar ones for b* and d.

Since b' operating on a vacuum creates a one-electron or baryon
state and d' creates a positron or antibaryon, we see by (15.91) that an
electron has the opposite parity from a positron in the same orbital
state. With the arbitrary phase choice given in (15.88) the electron
state transforms under the parity operator as a scalar and the positron
as a pseudoscalar, according to (15.91). An electron-positron pair in a
relative s state has an odd intrinsic parity independent of the phase
conventions. Similarly, the parity of a baryon-antibaryon pair in a
relative s state is odd if we are dealing with a theory for which @ is a
symmetry operation as in (15.85):

® [ d*p f(p2)b' (p,8)d" (p,9)[0) = — [ d*p fPHV'(p,8)d"(p,5)|0)  (15.92)

To construct an explicit expression for the parity operator for a
Dirac field, we need only repeat the steps (15.79) to (15.84), finding

®pirsc = €XP (2Ppirac)
Poire = — 5 [ @,5)5(0,9) — b(2,9)b(—p,s) + @'(p,5) d(p,9)
+ d'(p,s)d(—p,8)]  (15.93)

Another consequence of the appearance of v, in the parity operator
is that ¥y is a pseudoscalar; that is,

CY(x,DY(X,8) 0! = —P(—x,8)vsp(—X,t) (15.94)

This is important for meson-nucleon interactions. For instance, the
model lagrangian (15.30) satisfies (15.71) under the combined parity
operation

@ = PyPuPr:CrPye

applied to all nucleons and mesons if (and only if) the pseudoscalar
operator (15.83) is chosen for the mesons as required by experiment.

The intrinsic parity of the electromagnetic field is determined by
correspondence arguments, since it is coupled to classical currents.
Therefore, for photons we specify

PA(x,t) P! = —A(—x,0) (15.95)
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This leaves the Maxwell lagrangian invariant. @ is constructed by
imitating the steps taken for the Klein-Gordon field.

15.12 Charge Conjugation

The symmetry operation of charge conjugation is associated with the
interchange of the role of particle and antiparticle. In the special
application to electrons in Chap. 5 this amounted to reversing the sign
of the electric charge and of the electromagnetic field. This interpre-
tation is retained here. In terms of the lagrangian (15.69), which
includes the external fields AS** of the measuring apparatus, this leads
to the requirement, for a theory which is charge conjugation invariant,
that there exist a unitary operator @ such that

ce(z)e ! = £(x) Cju(x)C ! = —j,(x) (15.96)

where j.(x) is the electromagnetic current. € must also change elec-
trically neutral particles, described by non-hermitian fields, such as
K° n, and A to their antiparticles K9, 7, and &, in order that the
conservation laws of strangeness, nucleon number, and isotopic spin be
invariant under €. For photons and #° mesons, described by hermitian
fields, the particle is not distinguished from the antiparticle, and under
€ the hermitian field can at most change by a factor —1. In the case
of the electromagnetic field, A(z) must transform under € according to

CA(@)C! = —A(2) (15.97)

in order to leave the j(x) - A(z) term in the lagrangian invariant. In
momentum space this leads directly to

cat(k et = —at(k)) (15.98)°

and imitating the procedure developed in constructing the parity
operator, we find

e = exp [ir [ d% }2: at(kNakN) | (15.99)

In the presence of interactions, € in (15.99) may not be a symmetry
operator of the theory. In this case we construct €, as in (15.86) and
(15.87) for @, by forming

C(t) = ¢HiQ e iH! (15.100)

where @, satisfies (15.97) at ¢ = 0 and is given by (15.99) in terms of the
expansion coefficients of the interacting photon field at ¢ = 0. For
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free-field theory the vacuum |0) is nondegenerate and therefore an
eigenstate of the symmetry operator €. We follow the analogous con-
vention to (15.76) for @ of choosing the phase for the unitary operator

@ so that
el0) = +/0) (15.101)

that is, the vacuum is an even eigenstate. For an n-photon state the
eigenvalue of € according to (15.97) and this choice is (—1)*. This is
denoted as the charge parity of a state. In the presence of interactions
we retain these conventions when further assuming the vacuum state to
be nondegenerate.

For #° mesons the choice of sign associated with the transforma-
tion @ is dictated by the observation of the decay 7° — 2y. If charge
conjugation invariance holds in strong and electromagnetic couplings,
the x° must be even under € if it is to couple with the state of two
photons, which by (15.97) is even.

Turning next to the charged r-meson fields, it is natural to consider
¢ and ¢*, which create the minus and plus charge eigenstates. Since
£(z) — £(z) and ju.(x) —» —j.(x) under the transformation ¢ 2 o*, we
search for a € which has the property, up to an arbitrary phase,

Co(x)C! = o*(x)  Cp*(@)C! = p(2) (15.102)

In terms of the creation and destruction operators (12.57) forx+ and =—,
this reads
edl(k)e—r = a (k)  ed (k)e! = al (k) (15.103)

Alternatively, in terms of the hermitian fields ¢1(z) and ¢.(x) of (12.52)
Cor()C! = g1(x)  Cop(x)C! = — (k) (15.104)
or in momentum space,
Cai(k)e—! = a (k) Cax(k)e—l = —ay(k) (15.105)

which shows that € is a reflection operator in isotopic space about the
(1,3) plane. We see that eigenstates of @, as is clear physically, must
contain equal numbers of 7+ and =~ mesons and hence are electrically
neutral. Formally, this is verified from the observation that

eQ = —Qe (15.106)

To construct € for the complete m-meson field (¢1,¢2,¢3), we recall from
(15.104) that € fails to commute only with ¢.. Following the procedure
employed for the photon, we find

e = exp [ir [ d% al(k)as(k)] (15.107)
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In the general case when it is not a constant of the motion we construct
@ as in (15.100).

Similar considerations apply to the K mesons. The remarks
above may be transcribed without change to the K+ and K- fields.
Since for K+ mesons Qg+ = Sx+ = Y+ by (15.64), (15.66), and (15.68),
it follows from (15.105) that € anticommutes with S and Y. In addi-
tion, the K° and K° must also transform into each other under €; this
transformation is accomplished in the same way as for K+ and K-, the
only difference being that @ now vanishes. However, it is still true
that € anticommutes with S and Y. Since ¢} and ¢xo create the K°
and K° which are eigenstates of S, the hermitian linear combinations?

o= 5 lom = ok)  om = (ot gk (15108

in analogy with the ¢; and ¢; of (15.104) for charged = mesons, create
the states of even and odd charge conjugation. These states are
important in the theory of the weak decays of the neutral K mesons.?

A discussion of charge conjugation for a Dirac particle has already
been given in the companion volume. The free Dirac equation is
invariant under the replacement

¥(z) — CY7(z) (15.109)
where C is a 4 X 4 matrix with the property
| Cv,C~1= —4%  or  CuvaCit = —v4 (15.110)
In Eq. (5.6) we chose
C =4y2y' = —C-!'= —Ct = —-CT (15.111)

in the representation with yo = v,T and y2 = v.7. In field theory we
seek a unitary operator @ which generates the transformation (15.109):

Cla(@)C! = Cagllp(z) = (Cy)asb ()
and CY.(x)C! - gbﬁ(x)C;j (15.112)

with the matrix C given by (15.110) and (15.111), up to an arbitrary
and uninteresting phase factor. The matrix order in (15.112) is
explicitly shown by the indices and must be carefully watched.

It is readily verified that under € the commutation relations
(13.53) and (13.54)—as well as the Dirac equation—are invariant and
that £ in (13.42) changes only by an inessential total divergence.

1 The K°is known to have odd intrinsic parity. Thus according to (15.108),
the K, is even under the combined operation €® and the K odd.
2 See Proc. 1964 Intern. Conf. High-energy Phys. (Dubna).
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Acting upon ¥(z)v.¥ (), C gives

@) @) = —a(@)CopgvinCrrdi (2)
= Yal()vial: () (15.113)
However, we have already seen in Seec. 15.5 that the identification of
¥(x)yp(x) with the current leads to difficulties unless one anti-
symmetrizes (or, equivalently, normal-orders) the fermion field opera-
tors as in (15.26). Identifying
Ju(@) = B[P (2),v(2)]
it follows directly from (15.113) that
Cju(@)e ! = —ju(2) (15.114)

and therefore the electromagnetic current is odd under € as demanded
in (15.96). It also follows that if the vacuum is nondegenerate, it is
an eigenstate of €, and (0|7.(x)|0) = 0.

To construct €, we go into momentum space, recalling from Chap.
5, p. 69, that the electron and positron spinors are related by

(CY)apth(p,s) = va(p,s)eie®)
(CY)as}(D,8) = Ua(p,s)ei*?:®)
Carrying out the momentum expansion of (15.112), we find
Cb(p,s)C~! = d(p,s)ei*r
ed'(p,s)e1 = bt (p,s)eie®.

which shows that the charge conjugation transformation interchanges
the particle and antiparticle operators, in accord with its definition.
The explicit construction of € follows along a path similar to that taken
earlier. First it is convenient to break € into a product of two unitary
transformations

C = CC (15.115)
and to choose €; to remove the phase factor ¢:

Cib(p,s)Cr~! = €@ b(p,s)
Cudt(p,s)@ ! = eiv@adt(p,s)

By explicit construction we find

e =exp{—i [ @) oAD' BN — d'(p)dp]} (15.116)
ts
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C. is then constructed by the same techniques as for the parity operator
(15.84) and found to be

. 2
€ = exp {%’ [ @D ) B@s) - d'@a)lbms) - d(p,s)l} (15.117)

s=1
If e is not a constant of the motion, (15.116) and (15.117) remain valid
at { = 0 only and, as before, @ is constructed at general times ¢ by
(15.100).

We leave as an exercise the demonstration that the introduction of
m-meson—nucleon couplings according to the lagrangian model (15.30)
does not destroy charge-conjugation invariance, provided the € trans-
formation is applied simultaneously to all fields appearing in £. For
electromagnetic couplings, the symmetry is preserved; it was, in fact,
the way the symmetry was introduced.

We consider the decay of positronium as an interesting illustration
of the application of charge conjugation invariance to the prediction of
selection rules. In the same way as for the neutral K mesons, we can
form positronium eigenstates which are even or odd under €. To form
positronium, let us first construct a free electron-positron pair from the
vacuum and superpose states of different spin and momentum to
represent the initial positronium state of a given angular momentum

Vor = [ dpdip’ ) § 0,80, W @@ ,)I0)  (15.118)

Although (15.118) is not the exact state in the presence of electro-
magnetic couplings, it has the same symmetry properties as the true
physical state because of the invariance of the electromagnetic inter-
action under @. Therefore, we need only consider what kinds of
amplitudes F(p,s;p’s’) correspond to states even under €, which are
observed to decay into two photons, and what are the odd states decay-
ing to three photons. Applying € to (15.118), we find, using the anti-
commutation algebra for the bt and d* operators,*

[dip d%p' ) $(p,s;p,)d! (2, (0',5)10)
8,8

eq’e"c‘

= —fdpdp ) 5@ . (p,8)d! (9 ,5)|0)

8,8
Evidently a state even under the interchange of electron and positron
g(p)s;p”s,) =+ 3:(1":3';1’,3)
1 We have omitted phases (p,8). For justificaticn of this, see Prob. 23.
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is odd under € and vice versa. This means that the 38, triplet state of
positronium decays with three-photon emission and the 'S, singlet state
decays into two v rays.

A symmetric state of boson and antiboson is even under €, because
the minus sign coming from the anticommutation relations is missing.
As a general rule, it is convenient to remember that the eigenvalue
under charge conjugation of a particle-antiparticle pair is +1 if the
particles are in a state allowed for two identical particles (even for
bosons, odd for fermions). For an odd eigenfunction the situation is
just reversed.

15.13 Time Reversal

The time-reversal transformation changes the direction of time from ¢
to t' = —¢. In constructing this transformation for the one-particle
Dirac theory we found that it is a symmetry operation if it includes in
addition to the instruction to replace ¢ by #' the command to take the
complex conjugate and multiply the wave function by a matrix
T = 7y'y® in the representation where only y? is imaginary. In field
theory we seek an operator 3 which transforms physical states develop-
ing in time ¢ to states as would be viewed on backward running film
with ¢ = —¢. The quantum conditions (11.70) make it clear that 3,
as in the one-particle theory, will not be a linear operator. Consider,
for example

(H,g(x,)] = —i 250 (15.119)
If we seek a unitary operator U which leaves the action invariant and
which transforms ¢,(x,t) to Woes(x,t") = Ue.(x,t)U~1, we find

!

UHA g, (x,0)] = + i 22:3) (15.120)
In order to restore (15.119), it is necessary to have U transform H to
—H in (15.120). This is unacceptable on physical grounds, since the
eigenvalues of H must be positive relative to the vacuum state, before
and after the transformation. Faced with this situation, we settle, as
in (5.14), for a nonunitary 3, obtained by appending to the unitary
the instruction K to take the complex conjugate of all ¢ mumbers.

1The operation of taking a complex conjugate is nonlinear; 3 is called an anti-
linear, or antiunitary, operator. See E. P. Wigner, Gittinger Nachr., 81, 546 (1932),
W. Pauli (ed.), “Niels Bohr and the Development of Physics,” McGraw-Hill Book
Company, New York, 1955, and G. Liiders, Ann. Phys. (N.Y.), 2, 1 (1957).
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Then if

5=uK and O0H3'=H (15.121)
(15.119) will be invariant under 3. In terms of the lagrangian density
(15.69), including interaction with an external field, the theory will be

time-reversal invariant provided a J exists such that the commutation
relations are invariant:

I3 = £(x,—1) (15.122)
and 37.(x,0)3°1 = jr(x,—1) (15.123)

In (15.123) the electromagnetic currents are reversed while the charges
are unchanged under time reversal. This is required by classical corre-
spondence, since for the external electromagnetic fields

A,(x,t) > Ar(x,—1) (15.124)
under time reversal; and therefore by (15.123),
Ju@ AR ) — + Jux,— ) A*(x,—1)
Thus 3 changes the action according to

3J (ta,4) 3~ = [t " e(x,~1) d*z di = /_"t' Az di £(@) = J(—ts,—15)
(15.125)

J(—t1,—t5) differs from J ({5,¢1) only by a translation in time, which is
also a symmetry operation of the theory. Therefore, (15.122) and
(15.123) are satisfactory criteria for time-reversal invariance.

We turn to a construction of 3 for the various free fields discussed
so far, starting with the electromagnetic field. According to (15.123),

JA(x,1)3!' = —A(x,—1) (15.126)

since the currents producing the field are reversed. This transforma-
tion satisfies (15.122) for the Maxwell lagrangian in transverse gauge
as in (14.9). It also leaves invariant the equal-time commutation
relations (14.13) and (14.17), owing to the presence of K. We go into
momentum space to construct 3. Inserting the expansion (14.33) into
(15.126), we find

2

““W”‘/VQVQE‘@WW%WwWMM
4+ Uat (k )\)tu_—le—inik-x]

2
—A(x, 2 e(k\)[a(k,\)eit+ies

0'_/vem
+ at(k,\)e—iot—ixx]  (15.127)
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With the convention used in (14.31)

t(kll) = -8(_10)1) 8(k,2) = +£(-k72)
we have

Uak, 1)Ut = +a(—k,1) Ua(k,2)U ! = —a(—Fk,2) (15.128)

To solve (15.128), we refer back to the solutions for the parity operators
of the scalar and pseudoscalar fields (15.78), (15.83), and (15.84) and
find

U = exp l:;—w / a3k [a*(k,1)a(k,1) — a'(k,1)a(—k,1) + at(k,2)a(k,2)
+a*(k,2)a(—k,2)]} (15.129)

For the free hermitian Klein-Gordon field, the criteria for a
satisfactory J, (15.122) and (15.123), are satisfied by the choice

Jp(x,))3 ! = +o(x,—1) (15.130)

For the charged field, the requirement that 3 transform j.(x,f) to
J*(x,—1t) suggests the choice

Je(x,0)3t = +o(x,—1) (15.131)

Thus for the three hermitian components of the r-meson field, we take
e1(x,t) +eo1(x,—1)

3| pa(x8) |37 = £ | —eu(x,—10) (15.°32)
¢3(x)t) +¢3(x) - t)

with the overall phase arbitrary. 3 may be constructed by following
the analogous steps used for the Maxwell field.
For the Dirac theory we seek an operator 3 such that

Wa(X,0)I"! = Topdp(x,—1) (15.133)

which must satisfy (15.122) and (15.123), and leave invariant the
anticommutators (13.53) and (13.54). We readily verify that these
criteria are satisfied if we take T to be the same matrix found in (5.15)
for the one-particle theory, namely:

T =iy Tyl'=vy"=*
with T=Tt=T"'= —-T* (15.134)
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in the representation in which only 2 is imaginary; for instance

5j“(x,t)5‘1 = !I/f(x,—t)T—l('Yo'Y,.)*T![/(X,—t) - (O";'YM'”(»
= J(x,— v (x,—1) — Olfr.¥|0)
= j"(x)—t)
checks (15.123).

The property (15.133) differs from one-particle theory, where
¥(x,t) —» Ty*(x,—t) upon the instruction of complex conjugation. In
field theory the analogous transformation ¢ — Ty! is unacceptable,
since this would transform, for instance, a state of an electron at rest
into a positron state.

Going into momentum space to construct 3, (15.133) becomes

dsp —1y, % iEt—ipx
\/(2 % \f 2 [Ub(p,8)U="u*(p,s)
+ tudf(p s)cu-lv*(p s) e—iEt+ip: x]

'\/(2 )3 \/‘ E [b(P,S)Tu(p §) eiBt+ins
+ d'(p,s) Tv(p,s) e—iE—irx] (15.135)

It follows from our discussion of time reversal in the one-particle theory
[see (5.16)] that

Tu(p,s) = u*(—p,—s)e®9  Ty(p,s) = v*(—p,—s)ei=-®» (15.136)

where the o’s are phase factors which depend upon the spin state. By
applying T again to (15.136), one finds, since T2 = 1,

a:(p,s) = 7 + ax(—p,—s) (15.137)
Using (15.136), we satisfy (15.135) provided

Ub(p,s)U~ = —b(—p,—s)eie 9

Wdt (p,s) Ut = —dt (—p,—s)eia-@0) (15.138)

The transformation U is most easily found by breaking it into the prod-
uct of two unitary transformations

U = U Uy (15.139)
U may be chosen to remove the phase factors

Wb(p,s)UT" = €™ @9b(,s)
Wdt (p,s)UT! = ei-Pgdt(p,s) (15.140)
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and is explicitly constructed to be

W = exp {~i [ @ ) [ (pD(@) — -(0,0)d' (@,5)dp.5)]}
*s8

(15.141)
U, then satisfies

Wb (p,8) U = —b(—p,—8) WA (p,8)U;" = —di(—p,—s) (15.142)

and using the same techniques as for the parity operator (15.83) is
found to be

w=oxp (=i} [ . W@+ =p~)

—d*(p,s>d(p,s>—df(p,s>d(—p,—sn} (15.143)

From (15.138) we see that the time-reversed state of one free
electron or positron with energy-momentum E,,p, and spin s is a state
of the same particle, but with eigenvalues E,,—p,—s for reversed spin
and momentum but again positive energy. The corresponding wave
functions for these states are related by!

Ve,.0s(X,0) = {0 |¥(x,0)| 1 electron; p,s)
= (KO|Ky(x,!) 1 electron; p,s)*
= (KO|u—'uKy(x,l) 1 electron; p,s)*
{0 |3¢(x,t)3-1 3 (1 electron; p,s))*
—eiles@OT*0 |Y(x,~1)| 1 electron; —p,—s)*
= g0 Yk o (x,—1) (15.144)

Equation (15.144) shows that the time-reversed wave functions
are related, as in the one-particle theory, to each other’s complex
conjugates.

In the case of interacting fields, we may borrow the operators we
have constructed, although we have only the expansions of the field
operators at time { = 0. Since the commutation relations at ¢ = 0 are .
unchanged from free-field commutators, we may construct a 3o which

1 Note that we explicitly separate the nonlinear operator K in the second line
by taking the complex conjugate. Also 7* = — T by (15.134).
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preserves, for instance, all the relations of the form

Uo‘l/a(X,O)ﬂEl = Taplﬁg(X,O)

J0p(x,0)35" = +¢(x,0)

3p(x,0)37" = F¢(x,0)

JoA(x,0)3," = —A(x,0)

5A(x,0)35 = +A(x,0) (15.145)

found for the free-field operators. Here 3, is identical with that con-
structed for the free fields, with the operators at, b, d, etc. replaced by
the expansion coefficients of (15.23) evaluated at ¢ = 0. Writing?
3 = e iHJygmiH! (15.146)

to form J at arbitrary times ¢, we find, for instance,

Wa(x,0)I! = e HSgh,(x,0)T;  eiHe
T ol (x,0) 2
Tass(x,—1)

I

as desired [see (15.133)].
Similarly, we find

Jo(x,0)37! = +o(x,—1t) and JAx)I ! = —A(x,—1)

If the 3 so constructed also satisfies (15.122) and (15.123), it is a sym-
metry operation of the theory, in which case

[3,H =0 (15.147)
and (15.146) simplifies to
3 = 30

15.14 The 3C® Theorem

We can readily verify that the electromagnetic interactions and the
wm-meson-nucleon interactions introduced in (15.30) are invariant under
the separate symmetry operations of 3, €, and ® which we have explic-
itly constructed for general interactions. It is, of course, possible to
modify the interaction terms by a judicious insertion of a few 7’s and
vs's here and there and in this way destroy 3, @, and @ as symmetry
operations without affecting invariance under proper Lorentz trans-
formations and displacements. It is remarkable, however, that the

1In the analogous construction for the time dependence of ® and € we dis-

placed time ¢ —» 0— ¢. Here for time reversal we displace ¢ — 0 — —¢, which
explains the different sign of the exponential factor.
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product of 3, €, and ® remains a symmetry operation provided only
that:

1. The theory, which in the present context means a local theory
for which there exists an appropriately normal-ordered hermitian
lagrangian density, is covariant under proper Lorentz transformations.

2. The theory is quantized with the usual connection between spin
and statistics; for example, Klein-Gordon and Maxwell fields are
quantized with commutation relations leading to Bose-Einstein sta-
tistics, and Dirac fields obey anticommutation relations leading to the
exclusion principle.

This is the 3C® theorem of Liiders and Zumino, Pauli, and
Schwinger.! We construct a proof for interacting Klein-Gordon,
Maxwell, and Dirac fields by showing that with the successive applica-
tions of 3(t), €(t), and ®(t), evaluated at a common time £, the hamil-
tonian H satisfies

Pe3HI'e-¢-1 = H (15.148)

Since our assumptions are based upon the properties of the lagrangian
density, it is more convenient to start by considering it and to work
our way back to (15.148). We shall first show that

PRIL(X, )T 1101 = &(—x,—1)

with @, €, 3 evaluated at time ¢.

By the Lorentz invariance of £, we mean that it is an hermitian
operator built up out of scalars formed from products of ¢,(z) and 4,(z)
and their derivatives 4/dz* and, in addition, of bilinear forms of spinor
fields or their derivatives ¢4TY¥®, which transform as tensors. The
indices A and B label the internal degree of freedom (p,e—,», ete.), and T’

is one of the sets of matrices 1, 77vs,7,4,vsvu,04. The action of ®€J on a
scalar hermitian field ¢, is

PCIen(x,8)37'€710! = Lo (—x,—1) (15.149)

where the + sign is arbitrary, depending upon the choice of signs in

(15.132). In terms of operators producing charge eigenstates, (15.149)
reads

CCIp(x,8)I 1P = +o*(—x,—1)
PCIp*(x,1)I 110~ = +o(—x,—1)

1 G. Liiders, Ann. Phys. (N.Y.), 2, 1 (1957).
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Putting together @, €, and 3 for the spinor fields [(15.88), (15.112),
and (15.133)], we find

CCH/H(x,)TICTIO! = —i(y ys)asPsh(—X,—1)

= Fiviglst(—x,—1)
and
PRI A(x, 1)~ 11!

— gt (—%,— ) (vsv0)sa  (15.150)
For the bilinear forms in the spinor fields there follows from (15.150)
CCIVA(X, ) Tagls®(x,1)31C~ 101

= —A(—x,— ) (vl *vovsh ¥ B(—x,—1)

= —hA(—x,—)Thd.B(—x,—1) 4 (15.151)
where I'"= 4T for T = 1, s, oy
IM=—-T  forT = 7,75

Retaining earlier assumptions that independent Fermi fields y4
and y® anticommute with each other and that products of spinor fields
always appear in £ in normal order, we arrive at

CCT: YA (X, ) TagysB(x,) :3-1C101
= 4+ :KL,B(—X,—t)F:)‘II/;‘A(—X,—t): (15~152)
In fact only for the vector case I' = y* with identical Fermi fields
A = B is the normal-ordering needed to proceed from (15.151) to
(15.152), since by (15.39)
—\pr(—x,—t)I‘:)‘;},B(—x,—-t)
= +3.2(—x,— )Tt (—x,—1) — 8458 (0)Tr (voI")
But it was just in terms of this vector current discussed in Sec. 15.5 that
we defined @, €, and J in (15.72), (15.96), and (15.123) such that
PeIH(x,H)ITICTIO = —j(—x,—1) = — 1 P(—x,— )y (—x,—1):
(15.153)

For the electromagnetic field we find, upon putting together @, @,
and 3 from (15.95), (15.97), and (15.126),

PCIA(x,1)J- e 1P~ = —A(—x,—1) (15.154)
Applying 3, €, and @ to the constraint equation (15.8) for Ao(x,t) gives

3
PCIA(x, )T 1e~t = — :—; lx%'l_yﬂjo(—y,—l) = —Ao—x,—1)
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as may be checked readily from (15.152). Therefore, we have

PCIA,(x)F e 10l = — A, (—2) (15.155)
Finally, if derivatives appear, we note that
d 2
%, = T A=z (15.156)

We may summarize these results by noticing that ®€J effects the
following changes:

1. All coordinates x, are changed into z, = —ux,; thus
e __9
oz, o=,

2. Hermitian scalar fields ¢,(x) are transformed into +¢,(z’), with
the arbitrary phase fixed here to be 4+1. The electromagnetic field
A, () is transformed into —A4,(z’).

3. All even-rank tensors including bilinear forms of the Fermi
fields or their derivatives are transformed into their hermitian con-
jugates, and all odd-rank ones are transformed into the negatives of
their hermitian conjugates.

4. All other ¢ numbers are replaced by their complex conjugates.

Because £ is a scalar, all tensor indices in any given term of £ are
contracted and there are an even number of minus signs associated with
condition 3; they may therefore be ignored. The net effect of the
instructions is equivalent to the instruction to take the hermitian
conjugate of £. The question of ordering of factors is eliminated by
the restriction that £ be normal-ordered. It is here that the connec-
tion of spin and statistics enters, since the operation of normal ordering
introduces a minus sign, (13.58), for anticommuting spin-}4 fields and a
plus sign, (12.25), for the Bose fields of spin 0 and 1. Consequently, we
find for a hermitian £ that

PCIL(x)T e 10! = (') = £(—x,—1) (15.157)

The, transition from £ to the hamiltonian density is given as usual
by
(@) = —£(@) + Y, m(@)én(): (15.158)
r

where the sum extends over all fields, Fermi or Bose, appearing in £.
Since 3, €, and ® were constructed to leave the commutation relations
invariant

[r(x,8),00(X',8)] = —18(x — X)8rs
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for Bose fields, or
{‘ll',-(x,t),qo,(x’,t)} = +i8%(x — x)by

for Fermi fields, we know that
®e3r,(x,8)3-1e- 161

—nem( —x,—1)
if .
CCIp,(x,1)37 €710~ = 0 (—X,—1) (15.159)
also

PRI, (x,8)3-1C~10!

-, a(a-Tt) ¢,(—x,—t) = _ﬂrﬂbr(—xy_t)

We conclude that
®eIXK(x,)Ie-1¢-! = 3¢(—x,—1)
and therefore (15.148) follows and the 3@® theorem is proved.!

Problems

1. Show that [JA = ejir in radiation gauge and construct the transverse current
operator.

2. Show that to lowest order in e, the vacuum charge density, before normal-
ordering, is cubically divergent.

3. Verify that [Q,H] = 0, showing constancy of the total charge in quantum
electrodynamics.

4. Verify the Heisenberg relations (15.18).

5. Verify the rules in (15.20) and (15.21) for the transformations of the field
operators under a Lorentz transformation.

6. Complete the proof of Lorentz invariance of quantum electrodynamics in the
radiation gauge by verifying invariance of the equal-time commutation relations
(15.9) and (15.10).

7. By choosing the gauge A, = 0 and adding a small photon mass term, as in
Chap. 14, Prob. 3, quantize the charged scalar field. (The lagrangian is given in
the footnote, page 87, and Appendix B.)

8. Repeat Prob. 7 for a charged Dirac particle.

9. Verify the Heisenberg equation of motion for a charge-independent meson-
nucleon interaction given by the hamiltonian (15.40), using (15.41). What hap-

1 An elegant theorem on the connection between 3C@®, spin and statistics, and
locality (weak local commutativity) has been established within the axiomatic
framework. For a discussion of the approach see R. F. Streator and A. S. Wight-
man, “PCT, Spin and Statistics, and All That,” W. A. Benjamin, Inc., New York,
1964.
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pens if one attempts to construct a quantum theory with this H if the proton and
neutron fields are specified to commute with each other?

10. Verify the nucleon number, isotopic spin, and charge symmetries of the model
lagrangian (15.30) and construct the constants from Noether’s theorem.

11. Write a general lagrangian £ which is bilinear in the eight baryon fields, linear
in the boson fields with no derivative couplings, and invariant under the baryon
number, isotopic spin, and charge or strangeness transformations. Introduce
electromagnetic interactions and compute the conserved currents.

12. Verify (15.75) for the orbital parity by expanding the field in spherical waves
and using properties of spherical harmonics.

13. Verify (15.93) for the form of the parity operator for a Dirac field.

14. Construct the parity operator for the electromagnetic field and verify the
invariance of the lagrangian and commutators of quantum electrodynamics under a
parity transformation.

15. Verify invariance of the Dirac equation and of the commutation relations
(13.53) and (13.54) under charge conjugation. Construct € in (15.115).

16. Verify that vector and tensor currents formed from bilinear forms in the Dirac
fields are odd and that scalar, axial, and pseudoscalar are even under €. Discuss
possible CP-invariant 8-decay interactions.

17. Construct the € transformation for the model lagrangian (15.30).

18. The combination known as G = e**Ive is useful for classifying particles. Deter-
mine how the baryons and mesons transform under G. 1In particular, show that a
state of n pions with @ = 0 has G parity (—).

19. Construct 3 for the r-meson field satisfying (15.132).

20. What becomes of a state of one right circularly polarized photon under time
reversal?

21. Verify the construction of J for a Dirac field in (15.141) and (15.143).

22. Construct a phenomenological weak interaction lagrangian for leptons,
nucleons, and mesons consistent with the ideas discussed in Chap. 10. Discuss
the congervation laws and the symmetries of £ they imply.

23. What is the explicit dependence of the phases ¢(p,s) in the charge conjugation
transformation on p. 116 on the momentum p and spin s? We omitted these
phases in discussing positronium states on p. 117. Justify their neglect by con-
structing § for given L and 8, using the angular-momentum operator.
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16.1 Introduction

It is the goal of quantum field theory as a physical theory to describe
the dynamics of interacting particles which are observed in nature.
We have already seen how the properties of free particles emerge from
the application of the formal quantization procedure to classical fields
and how symmetries are protected and constants of the motion identi-
fied in constructing interaction lagrangians. The task remaining is
that of constructing and studying, as well as evaluating, general matrix
elements which describe the dynamical behavior of interacting particles.

We are interested both in the amplitudes for single particles to
propagate in space-time—that is, the one-particle Green’s functions—
and in the transition amplitudes for interacting particles between
different initial and final states, that is, the S matrix. One of the main
results will be to reconstruct from the quantum field theory formalism
the Feynman rules of calculation developed in the companion volume.

16.2 Properties of Physical States

The problem of constructing exact solutions of the coupled nonlinear
equations for interacting fields, such as (15.4), has so far proved too
formidable for solution. Before turning to various approximation
procedures, let us study how far one can go in determining the proper-
ties of exact states ® and of propagators on the basis of invariance argu-
ments alone. In particular, displacement and Lorentz invariance play
important roles and are symmetries common to all theories of interest
here.

To begin with we choose the states ® to be eigenstates of energy
and momentum. This is possible because the existence of a conserved
energy-momentum four-vector P* is guaranteed by the assumed dis-
placement invariance as discussed in Chap. 11. We work in the
Heisenberg picture, specifying ® by the eigenvalues of P* and of all
other mutually commuting constants of the motion.

In addition, we put certain conditions on the eigenspectrum of P»
on physical grounds. In the absence of an exact solution for the
assumed P* these requirements are, of course, unproved. We assume
that:

1. The eigenvalues of energy and momentum all lie within the
forward light cone

P2=P,Pr>0 P>0 (16.1)
130
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2. There exists a nondegenerate Lorentz-invariant ground state of
lowest energy. This is the vacuum state

@ = |0)
and by convention the zero of energy is so chosen that

PY0)y =0 (16.2)
From (16.1) it follows that

Pl0) =0

also. Lorentz invariance of the vacuum (16.2) assures that |0) appears
as the vacuum state to observers in all Lorentz systems.
3. There exist stable single-particle states

&y = |P9)
with PO P®r = m,? for each stable particle of mass m..

Ignoring temporarily ‘“infrared’’ complications associated with
zero-mass states of photons and neutrinos, we add a fourth requirement:

4. The vacuum and single-particle states form a discrete spectrum
in Pe. This is illustrated by Fig. 16.1, which shows the energy-
momentum spectrum of, say, = mesons. The = meson is, of course, not
a stable particle in nature; its observed half-life for decay, primarily via

at— pt 4+

is ~2 X 10—8sec, as already discussed in Chap. 10. Thisis a very long
half-life relative to the natural frequency #/m.c* ~ 5 X 10724 sec, and
to a first approximation with neglect of the weak couplings we treat
the = meson as stable, as in our earlier propagator discussions. We
associate with it a field ¢ in constructing the lagrangian and energy-
momentum four-vector with the eigenspectrum of Fig. 16.1 for =-meson
states.

In the same way we shall associate a field ¢(x) or ¢(x) with each
discrete (or nearly discrete) state appearing in the spectrum of P,.
The spirit of this approach is quite similar to that of perturbation
theory. Having introduced fields for the stable particles into a
lagrangian, we assume that their mutual interactions do not violently
change the spectrum of states from the form, for instance, of Fig. 16.1.
This is evidently a very strong assumption and a critical limitation to
this approach, since it automatically excludes bound states. Haag,
Nishijima, and Zimmermann,! with an axiomatic approach, have

1 K. Nishijima, Phys. Rev., 111, 995 (1958).
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Vacuum

Fig. 16.1 Energy-momentum spectrum of = mesons.

recently made progress in showing how to construct a local field defined
at each space-time point # and associated with a stable bound state of
two given elementary fields—for example, how to represent a deuteron
formed from a pair of nucleon fields.! However, the precise relation
between such a field and the interaction terms in the lagrangian is
not clear.?

16.3 Construction of In-fields and In-states; the

Asymptotic Condition

Since we are primarily concerned with scattering problems, we want to
construct first the states which give a simple description of the physical
system at the initial time {— — . At this time the particles in a
scattering event have not yet interacted with each other and propagate
under the influence of their self-interactions only. Therefore, to start

1 The prescription is simple. If the one-particle ‘“composite’ state « is spin 0

and coupled to spinless fields A(z) and B(z), the field operator ¢« may be chosen to
be

. A(xz + €)B(z — ¢)
a! =]
ve(2) :g:g V2Ea(27 ) 0[A(z + OBz = o)

2 See in this connection the comments of S. Weinberg and A. Salam, Proc. 1962
Intern. Conf. High-energy Phys., CERN, Geneva, 683-687.
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building a theory of interactions, we seek operators creating independent
particle states with each particle propagating with its physical mass.
In the spirit of our discussion of the preceding paragraph we assume
that these states for all particle numbers and momenta form a complete
set.

For the case of noninteracting particles described by free-field
lagrangians the one-particle states were generated from the vacuum by
one of the creation operators appearing in the free-field expansion;
repeated applications of n creation operators led to the n-particle states.
The particle interpretation was derived from the spectrum of the
energy-momentum operator P* and the algebra of the creation and
annihilation operators as derived from the assumed commutation or
anticommutation relations. For the interacting fields we seek now
the corresponding operators creating states of single physical particles.
For simplicity, we discuss these operators first for the hermitian meson
field o(x) satisfying the wave equation

(O + mf) (@) = j(@) (16.3)
and the equal-time commutation relations
[¢(xxt))¢(Yrt)] = [w(x’t)rﬂ'(y’t)] =0
[W(x;t)"ﬁ(y’t)] = —i63(x - Y)

The current j(x) is a scalar operator constructed from the fields inter-
acting with ¢(z) locally at . If for simplicity we exclude derivative
coupling terms from j(z), we have

(16.4)

(@) = ¢(z)

Beyond these assumptions, j(x) is of arbitrary form. It might express
the coupling with nucleon sources or, perhaps, a self-coupling of the
form

J@) = Ne*(2)

in which case the field equation is derivable from the simple lagrangian

density
_1(80 08¢ ., 1,
"3—2(@%» moe* + 5N

Let us denote by ¢in() the operator which we are seeking in order
to construct the states of single physical particles. ¢in(z) will be
formed by a suitable functional of the exact ¢(z) and any other fields
present in j(z), and its existence will be shown by explicit construction.
To ensure that ¢i(z) has the desired interpretation of an operator
which creates a free physical meson from the vacuum, we assign to it



134

Relativistic quantum fields

the following properties which were explored for free fields in the pre-
ceding chapters:

1. @in(x) transforms under coordinate displacements and Lorentz
transformations in the same way as the corresponding ¢(z). This
choice guarantees the covariance of the one-particle states formed by
oin(z). For displacements, in particular, we have

[P*, oin()] = -29-‘%5(;9 (16.5)

2. The space-time development of ¢in(x) is described by a free-
particle Klein-Gordon equation with the physical mass m:

O + mY)eilx) =0 (16.6)

It follows from these two defining equations that ¢in(z) creates
the physical one-particle state from the vacuum. To confirm this,
consider an arbitrary eigenstate

Pejn) = piin) (16.7)

and form the following matrix element with the vacuum state [0):
. d
~1 5, (Mem@]0) = @l[P,en@)]|0) = piinlein(2)|0)

Iterating this operation gives, by (16.6),
(O + m?){nlew@)|0) = (m? — pa2){nlewn(@)|0) =0 (16.8)

Therefore, the only states produced from the vacuum by ¢i,(z) are
those with p,? = m? that is, the one-particle states of mass m. The
Fourier expansion of ¢i,(z) is the same as that given for free fields in
Eq. (12.7), which are also solutions of a Klein-Gordon equation (16.6):

ein(2) = [ d% [aia(k) fi(@) + af (k) ¥ ()]

. 1 .
with = ___ ¢ k= 16.9
1@ (27m) 32w ¢ ( )

and wr = \VEE + m? =k

as in (12.7), and
ain(k) =71 f d3xf,’," (x)aogoin(x)

asin (12.9). The operator coefficients ai(k) satisfy the commutation
relations obtained from (16.5):

[Pain(k)] = —k*ain(k)  [Pral(k)] = +keal,(k) (16.10)
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By repeated application of af,(k) to the vacuum, we can build up
general n-particle eigenstates. By (16.10) and the assumption of a
unique stable vacuum of zero energy,

Pral,(ky) - + - ala(kn)|0) = Pelky - - - ky in)
N
= Y Kal(k) - - - al(k0)|0) (16.11)

i=1
ain(k)[0) = O
and (pr - puinlk; - - - kyin) =0

unless M = N and the set (p1, . . . ,pu) coincides with (ki, . . . ,kw)-
As remarked before, the set of states formed with all possible choices of
number N and momenta k* is assumed to be complete.

To express the ¢i,(z) in terms of the fields ¢(x), we rewrite (16.3)
in terms of the physical mass m by adding a mass counterterm

dm?p(z) = (m? — mg)e(x) (16.12)
to both sides of the equation:
(O + me(2) = j(z) + dm2(@) = j) (16.13)

The current j(x) is now treated as the source giving rise to the scattered
waves. Removing these scattered waves from ¢(z) leaves just the
free waves propagating with mass m as given by ¢in(x) and suggests
that we write!

'\/_Z_ ¢in(x) = ‘P(x) - .[d4y Aret(x —Y; m)j(y) (1614)
where At —y;m) =0 for 2o < yo (16.15)

is the retarded Green’s function (see Appendix C) which satisfies
(O + m)Ares(z — y; m) = 84(x — y) (16.16)

As defined in (16.14), ¢in(x) satisfies the two conditions (16.5) and
(16.6) required for the in-fields. Since j(y) in (16.13) is a scalar
operator, we have, for example,

V'Z gin(z + a) = ¢(x + a) — [ d*Y Aee@ + 0@ — ¥) j¥)
= e'Pop(@)e P — [ dYy Ar(x — ¥) I + a)
= e'Pefo(2) — [ dYY Awes(z — ) J()]e~ P
= ¢iPor/7 pin(x)eiPe
as required.
The constant 4/7Z in (16.14) is included to permit normalization
of gin(z) to unit amplitude for its matrix element to create one-particle

1 Z is often denoted by Z;; we reserve this notation for the photon.
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states from the vacuum and will be evaluated shortly. The form of
(16.14) is reasonable and tempts us to suggest that as xo— — » the
interaction term vanishes according to (16.15) so that

e@) >VE en@) a5z — o (16.17)

and in accord with our intuitive notion of causality the field operator
reduces to the incident free wave.

Asymptotic conditions similar to (16.17) are commonly applied to
wave functions in one-particle quantum mechanics and were used
extensively in the propagator discussions of Chaps. 6 and 9. We used
there the adiabatic hypothesis to isolate initial and final free-particle
states from the interaction. Alternatively, we may achieve the same
isolation by constructing wave packets to represent localized solu-
tions which do not overlap the interaction region before or after the
scattering.

Equation (16.17), on the other hand, is an operator statement and
leads to contradictions arising from the impossibility of isolating ¢(z)
from the operator 7(y), which includes all self-interactions at o — — .
It is the matrix elements of the field operators that are the quantum
field theory analogues of the “wave functions,” and it is to these and
not to the operators directly that we must apply the asymptotic condi-
tion. The correct asymptotic condition as stated by Lehmann,
Symanzik, and Zimmermann takes the following form.! We let |a)
and |8) be any two normalizable states and define the field operator
¢/() by smearing ¢(z) over a space-like region according to

& (0) = if % F*(x,0) dop(x,1) (16.18)

with f(x,f) is an arbitrary normalizable solution of the Klein-Gordon
equation:

@O+ m)f@) =0 (16.19)
The asymptotic condition then states?
Jlim_(ale’()18) = V/Z (alell8) (16.20)

1 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo Cimento, 1, 1425
(1955).

2 Equation (16.20) differs from (16.17) by the very important ordering of
operations. Equation (16.20) requires that we construct normalized packet states
and form the matrix element before going to the limit { — — «. See W. Zimmer-
mann, Nuovo Cimento, 10, 597 (1958), and also O. W. Greenberg, doctoral dis-
sertation, Princeton University, Princeton, N.J., 1956.
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16.4

where ¢, defined by

>
ol = i &% f*(x,t)dopin (X,0) (16.21)

is independent of time ¢ by Green’s theorem, (16.6) and (16.19).

Equation (16.20), or the “weak asymptotic condition,” is what
will always be meant as the precise statement when we write (16.17).
It expresses the initial conditions on the localized wave packets
representing the incoming particles. The states (16.11) formed with
the in-field creation operators

lky © =+ knin) = ala(k)|ks + + - ky in)
aly(k)al (k) « - - al,(k)|0)  (16.22)

are always to be understood as limits of normalizable states formed by
the ¢/, of (16.21) for the packets f*(x,t) approaching the monochromatic
plane waves fi (z) of (16.9). A complete set of in-states and the asymp-
totic condition are all that we need to specify at { — — o« the initial
dynamics in a scattering experiment.

Provided /Z is nonzero, Eq. (16.14) defines the field operator we
sought for constructing the initial scattering states. Since we are here
working with a mathematical idealization of a physical theory in terms
of local lagrangians and field operators, we cannot guarantee that Z is
not zero owing to wild behavior of the theory at infinite energies.
Thisindeed may be the case if, as discussed earlier, the present formalism
is the local limit of some unknown, more elaborate theory. With this
reservation in mind we proceed formally to derive a general expression
for Z, the square of the amplitude for ¢(z) to produce a one-particle
state from the vacuum, from our initial assumptions on the spectrum
of P+ (16.1) and (16.2), and from canonical commutation relations
(16.4).

Spectral Representation for the Vacuum Expectation Value
of the Commutator and the Propagator for a Scalar Field

In order to obtain an expression for Z, we construct the general form of
the vacuum expectation value of the commutator of two fields:

ihlea) = Olle(),e@)]I0) (16.23)

The commutator itself cannot be given because, in contrast with
the free-field theory, Chap. 12, we cannot solve the field equatians here,
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However, the general form of (16.23) can be derived on the basis of
invariance arguments and the assumptions on the spectrum of P,
Inserting a complete set of eigenstates (16.7) between the two field
operators in (16.23) and using displacement invariance of the theory
(16.5) to write
(nlo(x)|m)

(nleT=o(0)e~F<|m)
€P=rn) = (n|o(0)|m) (16.24)

we have

A (z,2")

—1 Y {0]¢(0)[n)(n]¢(0)|0)(e=7n(z==) — gira-(z=e)
=A@ —2') (16.25)

It is convenient to group together all states corresponding to the same
eigenvalue p,. Therefore, introducing

1 = [d'q8(px — )
we rewrite (16.25) as

ANk —21) = ———13 dig | (2m)? ) 8 (pn — @)|(0]e(0)|n)[2
@) .
X (eirte—2) — giv—aT)  (16.26)

The quantity within the brackets is the spectral amplitude?! p(g),
p(g) = 2m)* Y 8'(p» — I(0le(0)|n)|? (16.27)

and measures the contribution to A’ from all states with energy-

momentum eigenvalue g. We may next appeal to Lorentz invariance

of the sum in (16.27) to conclude that p(g) is a scalar function of ¢2

only. Explicitly we have, using Lorentz invariance of the vacuum
U(@)0) = |0)

and of the scalar field ¢(0)

U(a)e(0)U~(a) = #(0)
p(@) = (2m)° Y, 8 (P — D)|(0|¢(0)|U(a)n)? (16.28)

where a is the matrix of coefficients for a proper Lorentz transforma-
tion. Lorentz invariance of the & function, verified by looking at its
Fourier expansion, allows us to write

84 (pn — @) = 8'[(P» — Qa7 (16.29)

1In terms of unrenormalized fields.
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Finally, carrying out the sum over the complete set labeled by
|m) = |U(a)n), with eigenvalues

P = (m|P¥lm) = (n|U-Y(a)P*U(a)|n) = (pa~Y)* (16.30)
we arrive at the result

p(@) = 2m)* Y 8*(pn — qa~)|(0le(0)Im)|* = p(ga~?)
Since p(g) vanishes outside the forward light cone owing to the assumed
conditions on the spectrum of P,, we may write

(@) = p(g?)0(go) (16.31)

where p(q?) vanishes for g2 < 0 and is real and positive semidefinite for
g2 2 0. Equation (16.26) can then be put into the form of a weighted
integral over the mass parameter of the free-field commutator function

M= = (2_1r;’ / d*q p(g?)8(qo) (6772 ===) — ¢iv(=—a)
= —(2_7r ;3 ﬁ) * do? p(o?) / diq 8(g — o?)e(go)eia ==

= '/;w do? p(e?)A(x — o', 7) (16.32)

6(qo), €(go), and the invariant A function with mass parameter ¢ are as
defined in Appendix C.

We refer to (16.32) as a spectral representation for the vacuum
expectation value of the commutator. It was derived for quantum
electrodynamics by Kallén in 1952 and for the present case by Lehmann
in 1954. The above derivation goes through with essentially no
change for the various Green’s functions of the theory, and in particular

8y = &) = —iOIT(@e@NI) = [, do* p(eHAr(@ — ', 0)
(16.33)
or in momentum space

’ *° 1
Ax(p) = ﬁ, do* o0 i

with the same weight function p as in (16.32).

1 G. Killén, Helv. Phys. Acta, 26, 417 (1952); H. Lehmann, Nuove Cimento, 11,
342 (1954). See also A. Wightman (unpublished, 1953) as quoted in S. Schweber,
“An Introduction to Relativistic Quantum Field Theory,” Harper & Row, Pub-
lishers, Incorporated, New York, 1961. We have freely interchanged orders of
integration and summation. For the justification for this, see the references.
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Although we cannot explicitly evaluate the infinite sum for the
spectral amplitude in (16.27), we can, by separating out the contribu-
tion of the one-particle states, prove the condition

0<5Z<1 (16.34)

and establish finally the contradiction with (16.17) as an operator
statement.

By the assumptions on the spectrum of P*illustrated in Fig. 16.1,
p(d?) for ¢2 = m? can be computed by considering only the one-
particle matrix element (0|¢(z)|p) in (16.27). By (16.14) this is given
by

Ole@)|p) = V'Z 0lew(@)|p) + f d%y Aree(z — y; m)(0|5()|p) (16.35)
The second term in (16.35) vanishes by (16.13)
©li@)Ip) = OO + m»e®)Ip)

= (O + m?)e=»v(0|(0)|p)

= (m?* — p*){(Ole()|p) = 0 (16.36)
Therefore

Ole@)|p) = V'Z (Olein@)|p) (16.37)

By definition, ¢i,(x) is normalized so that its matrix elements to create
one-particle states from the vacuum have unit amplitude, coinciding
with the free-particle result. By (16. 9) and (16.11),

Olen@lp) = [ %~ Olan®lp)

(2 )3

e—w z
/@020,

and v/Z in (16.37) represents the amplitude for creating the one-
particle state from the vacuum via ¢(z).

The contribution of the one-particle states to the sum in (16.27) is,
by (16.37) and (16.38),

(n)* [ @ip 80 — ) gy = 20t — m6g)  (16:39)

(16.38)

Separating this in the sum over states for the spectral amplitude, we
may write in place of (16.32),

AN —2')=ZA@x — z';m) + /":, do? p(e)A(x — 2’;0) (16.40)

where the threshold m] now coincides with the square of the mass of



Vacuum expectation values and the S matrix 141

the lightest continuum state beyond the discrete one-particle term

which contributes to p(e?); in Fig. 16.1, for example, m = m, and
2 __ 2

m; = 4m,.

Taking a time derivative of (16.40) and then setting ¢’ = ¢ pro-
duces the constraint (16.34) on Z that we want. Using the canonical
commutation relations (16.4) along with the definitions (16.23) of A’
and (12.42) for A, we find

lim (14,8 — ) = OlloA,0&,010) = —iv'x = )

t'—t

= lim (zai A — o'; a)) (16.41)
t'—t ¢
so that
1=2+ [ 0(o?) do? (16.42)

Together with the condition (16.31) that p(¢?) is never negative, this
assures that

071 (16.43)

as claimed in (16.34) if the integral in (16.42) exists and the calculation
makes any sense. The limit Z = 1 is excluded if there is any coupling
to the continuum states. This isin accord with intuition. We expect
that the amplitude for ¢(z) to produce the one-particle states out of the
vacuum is reduced to less than its value of unity for the free-field case,
since it can produce continuum states as well. However, Z cannot be
zero if (16.14) is to define ¢in(z) and permit the construction of states
as in (16.20) and (16.22). It is uncomfortable, then, to find that
individual terms in the perturbation expansion violate this requirement.

In the presence of interactions, so that Z < 1, we find the contra-
diction with the strong asymptotic condition (16.17). Assuming its
validity and repeating the steps in (16.41), we find

Jim (Oflo(0) 0 010) = —i5'(x - x)

?

= lim Z(0|[éin(x,1),0(x",1)]|0) (16.44)
t— —

whereas (16.8) and (16.38) imply
(0|[@in(2),0ia(2))]|0) = 7A(x — ') (16.45)

By taking a time derivative of (16.45) and comparing with (16.44), we
would conclude that Z is unity. In this case the loose interchange of
limiting procedures has evidently been unjustified.
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16.5 The Out-fields and Out-states

Just as we have reduced the dynamics at {— —  to that of free
particles with the aid of the in-fields, so we can do the same thing at
t— 4+ o by suitably defining out-fields ¢oui(z). We want such a
simple description of the physical system at t — + «, since this is the
situation in the final state of a scattering problem.

The ¢out(x) may be constructed by proceeding along lines closely
parallel to the development for ¢in(z). They are defined to satisfy, in
analogy with (16.5) and (16.6),

[P (@) = —3 202 (16.46)
(D + m2)¢out(x) =0 (1647)

and therefore ¢ou(x) produces from the vacuum one-particle states
only, as in (16.8). Also, from the expansion analogous to (16.9),

Cout(®@) = J d% [aout(k) fx(2) + alucfi @)] (16.48)
we find

[P#,00ui(k)] = —ktaous(k) [P ";azut(k)] = k"azut(k) (16.49)

in analogy with (16.10).
Now, in contrast with (16.20), we want an asymptotic condition
in the form

Jim (el ()]8) = V'Z (al¢hulB) (16.50)
or simply
(@) > V7Z goulx) a8t + o (16.51)

where (16.51) is understood as meaning weak operator convergence
(16.50), as discussed for ¢in(x). This suggests the definition

V'Z ¢out@) = ¢(x) = [ d'y Aaav(z — y; m) j(y) d'y  (16.52)
in place of (16.14). Auav(x — y; m) is the advanced Green's function.

(O + m)Asav(@ — y; m) = 84z — y)
Awv(@ —y;m) =0  zo—yo>0  (16.53)

The normalizing constant 4/Z is again introduced so that ¢ou:(x) has
unit amplitude to produce one-particle states from the vacuum and
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16.6

therefore, by (16.36) to (16.38), is identical with the v/Z in (16.14):
Ole@)p) = V/Z(0|@out(z)|p)
= VZ (0o () |p)

=Z e—iva (16.54)

1
vV @r) 2w,
From (16.54) it follows that the vacuum expectation values of the
commutators of ¢in(x) and geu(x) are simply those for the free fields

(Ollein(®),01(W)1|0) = Az — y)
<Ol[¢out(x)y¢out(y)”0> = 1A(x — y)

The proof that these commutators are in fact ¢ numbers and can
be written without taking vacuum expectation values on the left-hand
side,

(16.55)

[¢in(x)’¢in(y)] = [‘Pollt(x)’¢out(y)] = 'LA(x - y) (1656)

has been given by Zimmermann and is left as an exercise.!

The Definition and General Properties of the S Matrix

We now have all the necessary properties of the ¢in(z) and gou () and
all the formal machinery at hand for defining and studying the transi-
tion amplitudes, or S-matrix elements, of experimental interest. We
start from an initial state of the system with » noninteracting (that is,
spatially separated) physical particles with quantum numbers
P1, . . . , Dn, denoted by

|1+ ¢ Pain) = |ain) (16.57)
The label p will denote, in addition to the momentum, all internal
quantum numbers such as charge and strangeness characterizing the
particle. This is possible since according to its definition (16.14)

¢in(z) has the same transformation properties under an internal
symmetry transformation as ¢(x). More precisely, if

[@Q,0r(®)] = —Nrepa()

[Q)jf(x)] = (D + m2)[Q;¢r(x)] = _)\njl(x)
and therefore from (16.14)
[Q)ﬁoin(x)] = _)\"‘pi.n(x)

1 Zimmermann, ¢p. cit.

then
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According to this we can interpret the constants of the interacting
system in terms of the quantum numbers of free initial (or final)
particle states. For example, the constants constructed in Chap. 15
for the strongly coupled particles can all be applied directly to the
description of the free particles in the in- and out-states constructed
here.

The element of the S matrix for a transition from such an initial
state to a final state in which m particles emerge with p; « - - pi,,
denoted by

i -+ - pnout) = |8 out) (16.58)
is given by the probability amplitude
Sga = (B out |« in) (16.59)

Eq. (16.59) defines the Ba element of the S matrix.

It is instructive to compare (16.59) with the definition of the S
matrix in nonrelativistic propagator theory. In Eq. (6.16), the (f,7)
element of the S matrix was expressed as

S = lim [ d% of @O (&) = lim (o,(x), %} (x1) (16.60)
t— o t—> 0

¥}(x,t) is the exact scattering solution to the Schrédinger equation
(6.14), with the in boundary condition of reducing to the incident
plane wave at { — — . Sy i8 just the amplitude of the projection of
¥} at t— + « on a given free final state, ¢;(x,t). To rewrite Sy in the
form analogous to (16.59), we introduce ¥7(x,f), the exact scattering
solution to the Schrodinger equation with the out boundary condition
of approaching, at t — + «, the free wave ¢,(x,f) with the quantum
numbers f of the final state. ¥ (x,f) consists of the free wave plus a
superposition of spherical waves converging, in the past, on the scatterer
and disappearing as{ — 4 . It is a solution of the Schrédinger equa-
tion but with the retarded Green’s function in (6.14) replaced by an
advanced one:

V(@) = ¢s(@') + [ di G (@' 521) V(@) ¥ (21)
with G x) =0 fort! >t (16.61)
Then ¥; (x',t') — ¢s(x',t') as t’ — + « and in (16.60) gives
S = lim (¥7 (x0, % (1)
= lim [ d% ¥;*(x,0)eiH'eH T} (x,0)

{—> o

= (\I,;. (X,O) ;\I,?- (X,O)) (16.62)
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¥(x,0) is the wave function in the Heisenberg representation with the
time dependence removed, and (16.62) is the analogue of (16.59) in
terms of the wave functions with the in and out boundary conditions.

From (16.59) we have, by assumption of the completeness of the
in- and out-states, all matrix elements of an operator S which trans-
forms the in- to the out-states:

{8 in|S = (B8 out| {8 out|S—1 = (B in| (16.63)
From this follows
Sga = (B in|S|a in)

The S matrix is of central interest to us because its matrix elements
express transition amplitudes and are closely related to physical meas-
urements. A number of important properties of S follow from the
initial assumptions on the spectrum of states and from the properties
of the ¢in(x) and of the goui(x). They may now be enumerated.

1. Stability of the vacuum state requires |Se| = 1, or
{0 in|S = (0 out| = ¢i* (0 in|

The vacuum state is by assumption unique and the phase ¢o may be
put to zero, so that

{0 out| = (0 in| = (0| (16.64)

and so Seo = 1.
2. Stability of the one-particle state also requires

{p in|S|p in) = (p out|p in) = (p infp in) =1 (16.65)

since |[p in) = |p out) = |p) according to (16.54).
3. S transforms the in- to the out-fields according to

¢in(*) = Seout(x)S! (16.66)
To show this, we consider the matrix element
(B out|pout(®)|e in) = (B in|S¢out(z)|a in)

Now (8 out|geu(z) is an out-state, and we may write, by (16.63),
{B out|gou(x) = (B in|¢in(2)S, from which it follows that

(’3 inlﬂoin(x)sia m) = (B inlS¢out(x)la 1n>

By completeness of the in-states, we arrive at (16.66).
4, The S matrix defined here is unitary. From (16.63)

Sfla in) = |« out) (16.67)
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Consequently, using (16.63) again

(B in|SSt|a in) = (B out|a out) = 8. (16.68)

and SSt=8t8 =1 (16.69)
5. S is translation and Lorentz invariant,! that is,

U(a,b)SU-(ab) = S (16.70)

where U(a,b) defined in (11.66), (11.69), and (11.72) is the unitary
operator generating the transformation

’
z, = by + a,’%,

To prove (16.70), we introduce (16.66) into the transformation equa-
tion (11.67) for field operators under U(a,b)

ein(az + b) = U(a,b)ein(@) U1 (a,b) = US@ou(x)S—1U?
= USU'¢out(az + b)US—U-! (16.71)
But gin(az + b) = Seout(ar + b)S—1, and therefore

S = U(a,b)SU-(a,b)
is Lorentz invariant.

The Reduction Formula for Scalar Fields

Having these general properties of S and spurred on by interest in its
matrix elements, since |:Sg,|? measures the probability of experimentally
observed transitions between in-states o and out-states 8, we face up to
the highly nontrivial task of actually computing Sg,.

Until 1954 the only systematic approach to a calculation of the
S matrix was the perturbation theory expansion in powers of the
interaction current j(z) in (16.13). Progress since then has come from
the developments initiated primarily by Low? and by Lehmann,
Symanzik, and Zimmermann?® (LSZ), who showed how to bring to the
fore some of the general information contained in S without resorting to
weak-coupling perturbation expansions. They achieved this by apply-
ing the asymptotic conditions (16.20) and (16.50) to express matrix
elements of physical interest in terms of vacuum expectation values of

! Bear in mind that this does not suffice when electromagnetic interactions
are present, since a gauge transformation must accompany each Lorentz trans-
formation to reestablish radiation gauge in the new frame of reference. We must
therefore establish in this case that the S matrix is gauge invariant.

2F. Low, Phys. Rev., 97, 1392 (1955).

! Lehmann, Symanzik, and Zimmermann, op. cit.
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the field operators. We have already seen an example of the advantage
of working with vacuum expectation values in the developments leading
to (16.40) for the field commutator. We there achieved a compact,
general form for A’(z — z’) by invoking Lorentz invariance and other
general properties of the theory.

In what is to follow we shall find the vacuum expectation values of
products of field operators somewhat more tractable to work with than
the matrix elements in the form (16.59). On the one hand, it is possible
to expand the field operators ¢(z) directly in a perturbation series and
to construct in this way an expansion of the S-matrix elements in terms
of vacuum expectation values of products of the free-wave in-field
operators; rules of calculation are found for these expressions and are
just the Feynman rules of the earlier propagator approach. On
the other hand, invariance arguments such as invoked above in study-
ing A’(x — z’) are most readily identified and used when we study matrix
elements of the Heisenberg operators ¢ taken between unique, invariant
vacuum states. With the aid of these, considerable progress beyond
the perturbation methods has been achieved.

To this end we proceed to develop step by step the general “reduc-
tion technique’ of LSZ which extracts the information from the physical
states in (16.59) and displays it in produects of field operators sand-
wiched between vacuum states. Consider the S-matrix element

Ss,ap = (B out|ap in) (16.72)

where 8 denotes the emerging particles in the out-state |8 out) and
|ap in) is the in-state corresponding to an assemblage o of in particles
plus an additional incoming particle with momentum p.

Using the asymptotic condition, we want to extract particle p
from the in-state, introducing in place of it a suitable field operator.
Using (16.22), (16.9), and (16.48), we write!

(B out|ap in) = (8 out|al,(p)|a in)
= (B out|al,,(p)|a in) + (8 out|al,(p) — alu.(p)|a in)

= (8 — p outla in) — i(8 out]S d* f,(®)aulein(®) — gou(@)]a in)
(16.73)

Here |8 — p out) represents an out-state with particle p, if present,
removed from the set 8; if p is not included in B, the first term of (16.73)
is absent. If |ap in) represents an initial two-particle scattering state,

1 Rigorously, we must work with normalizable states and replace aix(p) by

e’ of (16.21). In practical applications, however, we generally resort, with due
caution, to the simple plane-wave solutions.
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then (8 — p out|a in) contributes only to the forward elastic scattering
in which the projectile and target particles preserve their quantum
numbers. The terms on the right-hand side of (16.73) are time-
independent by Green’s theorem, and the asymptotic condition
(16.20) and (16.50) permits the replacement of ¢in(X,20) by the field
(1/v/Z) o(x,xo) in the I'nit zo— —  and of gous(x,%0) by (1/4/Z)
¢(x,Z0) a8 o — + ; that is

(B out|ap in) = (8 — p outl|e in)

y >
+ 2 (lim — lim ) / 43z fp(X,20)00(B out|e(x,20)|a in) (16.74)
VZ srote  z—w
This accomplishes the first step in the reduction procedure. For a
more convenient and covariant form, we incorporate the time limits in
(16.74) into a four-dimensional volume integral by the identity

(lim — tim ) [ d% g@dgse) = [

zo— 4+ © To— —® —®

0

@' oo [01(2)30g2(a)]
= /_: dz [gl(x) :—:% ga(x) — 62§;x(%x) gz(x)] (16.75)

Introducing (16.75) into (16.74), using the property that f,(z) satisfies
the Klein-Gordon equation

02

) _ (92 - mfyto) (16.76)
and integrating V2 by parts! onto ¢(x,t), we obtain the desired form
(B out|ap in) = (8 — p out|x in)

+ :/% [ @2 £,@(@ + m?)(8 outlg(@)|a in)  (16.77)

The above procedure can now be repeated until we remove all particles
from the states and are left with a vacuum expectation value of a
product of field operators. For example, let us remove an out particle
p’ from the assemblage 8 = yp' in (16.77). Repeating the steps
(16.74), with appropriate hermitian conjugates, we find

(B out|e(z)|« in)
= (v out|e(@)|a — p’ in) + (v out|acu:(@)¢(@) — ¢(@)ain(p")|e in)
= (v out|p(@)|e — p’ in) -
— if d%(y out|eou®)e(®) — ¢(@)ein(y)|a in)d, f7(y) (16.78)

1 No surface terms arise from these partial integrations, by the usual assump-
tion that the physical system is localized in space.
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The asymptotic condition again permits the replacement of the in- and
out-fields by (1/4/Z)¢(y) at yo— — » and + «, respectively, in the
matrix element in (16.78), which can then be written in terms of the
time-ordered product (12.72),

(v outlpout(®)e(®) — ¢(x)@in(y)|e in)
= \%z'( lim — lim )y outiT(pw)e(e)le in) (16.79)

Yoo+
Finally, with the aid of (16.75) and (16.76), we arrive at
(yp' out|p(z)|a in) = (v out|p(z)|a — p’ in)
7 NI raneey
+ 77 [ @4y owtiT(ow)e@)le in) (T3 + m?)f3G)  (16.80)

The road is now clear to apply this reduction technique to remove all
particles from the states until we arrive at the vacuum expectation
value of a product of field operators:

(p1 - - - paout|gr -+ * gmin)
S \min ™ n

XA0|T(e(yr) - -+ eWa)e(@1) * « -+ o(@m))|ONTy, + m?)f;, (3
for all p; # ¢; (16.81)

In writing (16.81) we have, for simplicity, assumed all p; > ¢; and
dropped the forward-scattering terms appearing in (16.77) and (16.80);
these present no problem, since they too can be further reduced by
successively applying the same technique.

Equation (16.81) serves as a cornerstone for all calculations of
scattering amplitudes in modern quantum field theory. We remark,
as a preview of things to come, that (0| T(¢(21) * - - ¢(2,))|0) represents
the sum of all Feynman graphs with r particles created or destroyed at
(21 * + * 2,), as illustrated by Fig. 16.2. It is the complete r-particle
Green’s function. The factors ((J; + m?) in (16.81) remove the propa-
gators for the external legs leading into the interaction blob in the
diagram. To see this schematically, note that [J? + m? becomes
m? — p} in momentum space, canceling the corresponding propagator
factor 7/(p! — m?). The reduction formula (16.81) states that thei
S-matrix element is just the Green’s function for the r = n 4+ my
particles with the external legs removed and with the external momenta
put onto the mass shell p} = ¢ = m?. We explore this further in the
following chapters.
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Fig. 16.2 The complete r-particle Green’s
function.

The close analogy of (16.81) with the S matrix constructed in
propagator theory can be brought to the fore by looking back at (6.30)
and converting the volume integrals there to four-dimensional form.
Using the retarded property of the Green’s function there, we rewrite
(6.30), with the aid of the free Schrédinger equation

(i§+iv2)¢=o

2m

g
|

= —ilim [ @' [ d% o} t’) - (6@ a0

t'—o

= lim [ d%' [ d's o} ()G ) (-—z o+ Vz)«».(x)

t'— o0 2m

= —i [ a2 [ d o} (@) (_tT) G’ x)( 2+ 2Vm) oi(%)
(16.82)

Comparing with (16.81), we see that aside from the nonrelativistic
replacement

@+ m)— (i5+ 55

2m

the general r-particle Green’s function has been replaced by the exact
retarded one-particle Green’s function G(z’;r) for motion in an applied
external field. We leave it as an exercise to show that a similar result
is obtained from (6.56) in positron theory, with now the exact Feynman
propagator appearing.
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16.8 In- and Out-fields and Spectral Representation
for the Dirac Theory

The main problems encountered in extending the formalism developed
so far only for scalar fields to spinor and electromagnetic fields are
primarily formal ones. Spin complicates the algebra in the Dirac case,
and the gauge problem occurs in the Maxwell theory. However, the
basic ideas which have already been laid out in discussing the in- and
out-fields, in establishing the spectral form for the vacuum expectation
value of the commutator, and in developing the reduction formula may

be applied here also.!
The Dirac equation is written in terms of the physical mass m by
adding a mass counterterm to the source in analogy with (16.13):

@Y — mi@@) = j@@)  j@) =jk&) — (m — mo¥(z) (16.83)
The fields ¢ (x) are assigned the familiar equal-time anticommuta-
tion relations
{lpa(xyt)y'l'ﬁ(Yyt)} =0 {‘l’a(x;t)y‘l’;(Y)t)} = 63(x - Y)aﬂﬁ

as discussed in (15.9).
The in-field ¢in(x) is introduced and defined as before as the
inhomogeneous term in the integral equation corresponding to (16.83),

that is
VZy¥in(@) = ¥@) — [ d'y Sr(z — y, m)(y)  (16.84)
where S;.(x) is the retarded Green’s function
((V: — m)Seet(@ — y, m) = 8@ — y)
St —y) =0 2o < Yo (16.85)

The constant 4/Z, is again determined from the normalization of ¥;,(z)
to unit amplitude for its matrix element to produce one-particle states

from the vacuum.
As defined above, i(z) satisfies the free wave equation with

mass m
(¥ — m)gia(z) = 0 (16.86)
with the same transformation properties as ¥(z); in particular
. d in
[Pu¥in(@)] = —< —‘pﬁx—) (16.87)

1 H. Lehmann, op. cit.; M. Gell-Mann and F. Low, Phys. Rev., 96, 1300 (1954).
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From (16.84) it follows that each spinor cbmponent of yi,(z) satisfies
the Klein-Gordon equation and therefore, as in (16.8), Yin(z) produces
only one-particle states of mass m from the vacuum.

The Fourier expansion of yi,(z) is that of a free Dirac field and may
be written, as in Chap. 13,

@ = [ @ ), bud,)Un@ + da@,)Va@]  (1688)
ts

where

Up(@) = # \/% u(p,s)e7=

Val@) = gors Ao o)

with E, = /[p|? + m?. Inverting (16.88) and its hermitian con-
jugate for the operator coefficients gives

bin(,8) = [ d*% U, ()Y (@)
bh(p,9) = [ &z Yh (@) Un(2)
&in(py) = [ d% Ya(2) Viu(®)
dl(p,s) = [ d% V], (@) (@)

These satisfy commutation relations derived from (16.87), in analogy
with (16.10):

(16.89)

[P"ybin(p’s)] = —p* bin(p’s)
(Pbh(@,9)] = +p# bla(p,9)
[P,din(p,8)] = —p* din(p,s)
[P";ditn(pys)] = +p+ ditn(p!s)

These coincide with the free-field results and show that we can build

general n-particle states by repeated application of bf, and d, upon the

vacuum, in analogy with (16.11). We again assume, as always, that

the vacuum is a unique stable state of zero energy and that a complete

set of states is generated by repeated application of the in-field operators.
The asymptotic condition, as for the scalar field, is

y(z) — '\/Z_2¢m(x) ast— — ©

in the sense of weak operator convergence (16.20); that is, for normaliz-
able states

(16.90)

lim (@18 = V/Za (albhl6) (16:91)

¥, is defined by the first of Eqs. (16.89) with Ul,(z) replaced by a
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localized packet. ¢7(f) is defined by the same equation with i,(z)
replaced by ¢(z).

We may similarly introduce out-fields to provide a simple deserip-
tion of the physical system at t— + . Instead of (16.84) we write

V' ZYou(x) = (@) — [ d'y Saav(® — ¥)7(¥) (16.92)

@V: — m)Saav(x — y) = 84(x — y)
Sadv(x - y) =0 To > Yo

Equations (16.86) to (16.90) remain valid with replacement of in by
out. The asymptotic condition is now

Jim (W O18) = V/Z: (altlule) (16.94)

where

(16.93)

The equation determining Z,, the probability that ¥ (x) forms a
one-particle state of mass m from the vacuum, can be constructed in
analogy with the scalar theory by considering the spectral representa-

tion for
Sas(,2") = 0| {¥a(z),¥5(z") }|0) (16.95)
Inserting a complete set of states
Prjn) = piin)

and displacing the fields to the origin leads to
Sua(ea) = Sup@ — @) = 1 3, (OWa(OIn)nlFs(0)]0)e—i7r ==
+ (0|95(0) |n){n|¢a(0)|0)eiP»@=27]  (16.96)

As before, we introduce the spectral amplitude by grouping together
in the sum over n all states of given four-momentum ¢

pas(@) = (2m)* ) 8(pn — @){OWYa(0)|nKnl¥5(0)10)  (16.97)

n
and set out to construct its general form from invariance arguments.

p(g) i8 a 4 X 4 matrix and may be expanded in terms of the 16 linearly
independent products of the v matrices:

pap(@) = p(@)8as + pu(@)7is + pu(@)ohs + 5(@)ves + 8u(v*1%as  (16.98)

The structure of the coefficients of the matrices is strongly limited by
the requirement of Lorentz covariance.! The terms in (16.98) must

1For a field coupled to the radiation field we must always accompany a
Lorentz transformation by a gauge transformation to restore the transverse gauge
used in the quantization. Because S'(z,z’) is not gauge invariant [cf. Eq. (15.21)],
the considerations of this section will not apply. See Prob. 8.
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transform &s dicvated by the defining equation (16.97). Recall that
under a Lorentz transformation, the field operators satisfy

U(a)¥a(0)U=*(a) = S (a)¥a(0)

16.99
U@HOU-(@) = h(0)S(a) (16.99)

according to page 62. The matrix S is defined in Chap. 2 by
S-S = ary* (16.100)

Inserting into (16.97) and using Lorentz invariance of the vacuum as
assumed at the outset, U|0) = |0), we find

pas(g) = Y (2m)264(pn — )S2(a)Sis(a)(0l¥a(0)| U (@)n)(U (a)n|¥5(0)|0)
i (16.101)

Again taking advantage of Lorentz invariance of 8*(p, — ¢), as in
(16.29), to rewrite the sum over the complete set of states labeled by
{m) = |U(a)n), we may rewrite (16.101) as

pas(q) = Sai(a) Y, (2m)*6*(pm — ga=")(OWa(0)m)m|Ps(0)|0)Sas(a)

or simply
p(g) = 87'(a)p(ga=")8(a) (16.102)

Equation (16.102), together with the general expansion of p(g) given in
(16.98), determines the structure of the coefficients p, p,, etc. For
instance, if (16.98) is inserted into (16.102), it follows that

(@) = elga™)

that is, p transforms as a Lorentz scalar. Similarly,

eulq) = auvPV(qa—l)

transforms as a Lorentz four-vector, and so on. Since pqg is a function
only of ¢, and vanishes outside the forward light cone, it follows that p
and § depend only upon ¢% p,(¢) and §,(q) are scalar functions of q2
multiplied by g,, and p,, is proportional to g,g,. In this way the form
(16.98) is limited to

pep(@) = P1(g)as + p2(4%)8a8 + 51(¢?) (@7%)as + F2(gD)ves  (16.103)

To reduce the form of pas(g) further, we must require invariance of
the theory under the parity transformation ®, which has the property

CY(0)0~1 = yLun(0) (16.104)
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Inserting (16.104) into (16.97) and carrying out the steps analogous to
those used for proper Lorentz transformations, we arrive at the analogue
of (16.102):

Pep(,90) = Yarmrs(—a,g0) 73 (16.105)
Inserting (16.103) into (16.105) one finds

pr=p2=0 (16.106)

owing to the extra sign change arising from v, anticommuting with +ys.
Thus (16.103) reduces to the final form

pes(q) = p1(g*)ges + p2(q?)dap (16.107)

Our following discussion is based on the form of (16.107). @ is, of
course, not a symmetry operation in nature when effects of the weak
couplings are included. A more complete discussion should be based
on the form in (16.103), and, similarly, in (16.84) and (16.92) the
renormalization factor Z, should be recognized as a matrix of form
a + bys. We refer the interested reader to the literature.!

The spectral amplitude for the second term in (16.96) can be
related directly to (16.97) with the aid of ®€3 invariance of the theory.
Introducing the nonlinear operation K of taking the complex conjugate
which is contained in the time-reversal operator 3 = UK, we write

(0195(a")¥a(2)10) = (KO|K¥p(x")¥a(x)0)*
= (K{s(z")¥a(x)0| KO)

Introducing now 1 = (®CU)~(®CU) and using the ®CJ invariance
of the vacuum state

®c3|0) = 9/0) = |0)
leads to

(01¥5(z" ) (2)|0) = (895(z")6~ 0¥ (2)6-0/0) (16.108)
Recalling from (15.150) how the Dirac field transforms under ®C3

()07 = —i(yovs¥(—2))e = i(ys¥'(—17))a
09s(2")0 = —i(W(—2)vs70)s
we obtain, using v; = 57,
OlPs" Wa(@)|0) = — (¥)ar(Ol¥: (—2)r(—2")|0) (v s (16.109)

1 K. Sekine, Nuovo Cimento, 11, 87 (1959); K. Hiida, Phys. Rev., 132, 1239
(1963); 184, B174 (1964).
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Inserting (16.109) along with (16.107) into (16.96) gives finally

Sylx — ') =1 [ éL:gs 8(g0) ([ge1(g?) + p2(g?)]age—ie ==
— {7slgp1(g?) + p2(g))]vs}apeir =)
=i [ o T (@) + prlale
X (e-iv@—2) — gir@==") (16.110)

Since p vanishes for space-like 2, we may also write this as an integral
over the mass spectrum by introducing

o(@) = [, pA195(g* — M d?
We find

SLe@ — ) = — [ dM? [ipy (M. + po(M?)|uph(z — 5 M)
J M2 {py(M?)Sap(x — 2’5 M)
+ [Mpy(M?2) — po(M?))apA(x — 2'; M)} (16.111)

where the invariant A and S functions are as given in Appendix C.

The above derivation of the spectral representation goes through
unchanged for the vacuum expectation value of the time-ordered
product of the Dirac fields; it is necessary only to replace the S and
A in (16.111) by the Feynman propagators Sr and Ag:

Skes® = &) = +[dM? [ipy(M?)V. + po(MD)appr(z — 2'; M) (16.112)

or in momentum space

S, (p) = /;: adM? [pp1(M?) + p2(M?)] —I;T:Jlll?—-l-u

Similar forms can be written for the other Green’s functions as well.

Comparing (16.111) with (16.32), we see that in the Dirac theory
with the spin degree of freedom, the spectral form is given in terms of
integrals over two instead of one unknown scalar function. The
properties of p; and p, analogous to those of p(¢?) are

@) p1(M2) and ps(M?) are real
(ii) p1(M2) >0 (16.113)
(iii) Mpi(M?) — p2(M?%) > 0
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To prove (i), we take the complex conjugate of (16.97):
2, @) (pa — g)(n]¥:(0)| 0175y Br(OlYA(0) )

= [vor(@)Yolpe
= [p1(g®)g* + p2(g)]as

To prove (ii), we form the trace; from (16.97) and (16.107)

P:ﬂ(Q)

4
Tr yie(g) = 4qwa(e?) = % @m)*5pn — @) %, OlyeO)In¥aulvi()10)

4
= 2 @n%. = 9) 3 KOWeO)lm)l? 2 0

Since go > 0, p1(¢g?) > 0.

(iii) is proved similarly by forming the absolute square of the
operator (?¥ — M)y. Demonstration of this is left as an exercise.

We may now extract from the spectral amplitudes the contribu-
tion coming from the discrete one-particle states, as done for the
scalar field, and obtain a condition on Z; analogous to (16.42). Form-
ing the matrix element of (16.83) from the vacuum to a one-particle
state, |ps), gives

@Y — m)OlY(x)|ps) = (p — m){O[Y¥(0)|ps)e—r=
= (0]5(0)|ps)e~ir= (16.114)

Again appealing to known proper Lorentz transformation properties,
we recall from (16.99) that (0|¢(0)|ps) transforms as a spinor wave
function of momentum p and spin s:

(0l¢.(0)|psy = (0|U (a)¥a(0) U~*(a)|U(a)ps)
= 823 (a)(0lYs(0)|p’s")

and may therefore be written?!
0l (0)|ps) = au(p,s) + bu(p,—s) = (a + bys)u(p,s) (16.115)

Imposing the condition that the theory is to be invariant under the
parity transformation removes the b term in (16.115). By (15.88)
and (15.91)

0l¢(0)po,—p,s) = (a + bys)u(—p,s) = (0|CY(0)®~|ps)

vo(a + bys)u(p,s) = (@ — bys)u(—p,s)  (16.116)

1See Prob. 9.
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where the identification u(—p,s) = you(p,s) follows from the Dirac
equation.! Therefore, b = 0 and from (16.114), it follows that

0|7(0)|ps) = a(p — m)u(p,s) =0 (16.117)
and

Ol @)|ps) = V' Zz (Ol (2)|ps)

= (QX/T)%Z \/E'Ep u(p,s)e=ire (16.118)
Ol @)|ps) = v/Z, (Olyous(x)|ps) (16.119)

Because in- and out-fields produce only one-particle states from the
vacuum with matrix elements given by (16.118), it follows in analogy
with (16.55) that

Ol {ya (@), P58 W) }0) = —iSas(z — ) (16.120)

In analogy with (16.56) the anticommutators are ¢ numbers and
we can write

W @), I8} = (¥ @) ¥ @)} = —iSws(z — y) (16.121)

Demonstration of this is left as an exercise.
Using (16.118), we separate the contribution of the one-particle
state to the spectral amplitude (16.97), which is

z [ g—%; @54 = ) 5 1D Ts(r,9)

*’ = Z5(q + m)apd(q> — m?)8(qo)
Inserting into (16.111), we find
Sop(@ — 2') = Z3S.p(x — 7', m)

= Joe @M i (MDY + (M) ]aph & — &, M) (16.122)

where the spectral integral starts at the threshold m; of the continuum
spectrum.

At t = ¢’ the left-hand side of (16.122) is known from the assumed
one-time anticommutation relations for the fields ¥(x)

ws(X — X, 0) = (0] {¥a(x,1),¥(x',£)}|0)
7248%(x — X') (16.123)

1 Ag before, u(—p,s) = u(po, —p,s).
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We find then as a condition on the magnitude of Z,

1= 2, + [, a2 ;) (16.124)

or by (16.113),
0<2Z,<1 (16.125)

in analogy with (16.34).

In deriving this condition on Z,, the probability of forming a one-
Dirac-particle state from the vacuum, we have relied heavily on
Lorentz invariance of the theory. Since a gauge change must accom-
pany each Lorentz transformation if electromagnetic couplings are
present, and since S’(z — z’) is not gauge invariant, condition (16.125)
is not valid in quantum electrodynamics and Z,, a gauge-dependent
number, has no simple physical interpretation.

16.9 The Reduction Formula for Dirac Fields

The general properties of the S matrix which were discussed in Sec. 16.6
apply when spin-14 as well as spin-0 particles are present in the in- and
out-states. The reduction technique developed for scalar fields in Sec.
16.7 may be extended to matrix elements between states with Dirac
particles present with only minor modifications in technical details.

From (16.88), (16.90), and (16.121) it is apparent that we construct
n-particle in- (and out-) states just as in the free Dirac theory by
repeated application to the vacuum of

b (,5) = [Wh@ U, @) dz  dL(55) = [VE@)Win(z) d'z  (16.126)

A general in-state, for example, with the indicated quantum numbers
is written

&) . . . (3385 (si) - - . (P1s); @1 -« . gain)
= dL(B&) . . . dL(@E)bL(is) . . . bl(pisy)
X al(qr) . . . al(g)I0) (16.127)

where the convention adopted here is to list the arguments of the
fermion fields reading from right to left in the order in which they are
created in (16.127), with particles (p:s;) preceding the antiparticles
(p:3:). This convention fixes the signs of the states and takes care of
the bookkeeping questions arising from the anticommutation algebra
of the fermion operators.

To start the reduction procedure, we remove a Dirac particle (ps)
from the in-state, replacing it by the matrix element of a field operator.
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Applying the asymptotic condition (16.91) and (16.94), we repeat the
steps of (16.73) and (16.74), writing

(B out|(ps), e in)
= (8 — (ps) out|a in) + (B out|bl(ps) — bly.(ps)|a in)

= (8 — (p9) outla in) + [ d%z (8 out|Yh(z) — Whu(@)lle YV,u(2)
= (8= 9 outec i

\/_ [ a8 out| 52 2 F @Y Unu@)lain) (16.128)
Since U,,(z) is a solution of the free Dirac equation, we introduce
Yo% axo Ups(2) = (=7 V — im)UL(x)

and partially integrate the —y -V onto the ¥(z) in (16.128). This
gives for the second term

7 . RO S ——

- t —1Y —m)U,, 16.129
77 [ @'z (8 outlp@)la in)(—i¥ — m)Up(z) (16.129)

In asimilar way, removing an antiparticle from the in-state leads to

— m){B out|y(x)|e in) (16.130)

removing a particle from the out-state leads to

\/Z / dz Uye ()@Y — m)(ﬁ out|y(z)|a in) (16.131)

and removing an antiparticle from the out-state leads to

I - mVer)  (16132)

The pair of expressions (16.129) and (16.132) shows the close for-
mal connection between the amplitude describing the interaction of an
incident particle (electron with ps) in the in-state and the amplitude
for the interaction of an emerging antiparticle (positron with $'§’) in
the out-state; between the two expressions it is necessary only to
replace U, (z) by — Vza(z), that is, u(p,s)e=7* by —uv(§,§)e~ 772,
This is the field theoretic statement of the result of the propagator
theory developed in Chap. 6, and which instructed us to calculate
positron processes by propagating negative-energy electrons backward
in time. There is a similar correspondence in (16.130) and (16.131)
between the outgoing electron and incoming positron.
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To continue with the reduction process until all particles are
removed from the state vectors and we arrive at a vacuum expectation
value of a product of fields, we form time-ordered products as in (16.79).
Removing, for example, a Dirac particle from the in-state in a matrix
element containing both scalar and spinor fields gives

Bout|T(z1 * * * 2p)ay - - - p,|(PS)ex in)
= (B out|T(e(x1) * * * @(@a)¥a,(¥1) * * * Van(ym)
X ¥s,(21) - - * ¥8,(25))|(PS)ex in)
= (=)™?(8 — (ps) out|T(21 * - * 2p)a, - - - gl in)
+ (B out|T(21 * * * 25)a, - - - 5,6 (p,9)| in)
— (B out|(=)™7b!(p,)T(x1 * * * 2p)a, - - - glain) (16.133)

The sign (—)™*? is governed by the number of sign changes dictated by
the definition of time ordering for fermion fields [see Eq. (13.71)]:

TWa(@)¥s(¥)) = Ya(@)¥sW)0(xo — yo) — ¥W)¥a(®)0(yo — z0)

Inserting the asymptotic condition in the second term and imitating
the earlier discussion leading to (16.129), we find

/ d'z (B out|T(e(21) - - - Ya,(31) - - - ¥s,(2p)0n(2))| in)

X (=1Vz: — m)nUy(z), (16.134)

The corresponding expression to remove an antiparticle from the in-
state is

_ (2
V'Z,

>
— Mm)n
X (=)™2(B out| T(¥a(@)e(x1) * - - ¥5,(25))|x in) (16.135)
The expression to remove a particle from the out-state is
[ @' Uyet@ (V2 — m)n
X (B out|T(Ur(z)e(z1) - * - ¥s,(25))| in) (16.136)
And the expression to remove an antiparticle from the out-state is

\/_ [ @z (8 out|T(o(ay) - - - ¥a,E)r()la in)(—)m+
X (—'le - m),\rV,w'z'(x),- (16137)

In this way we eventually arrive at the vacuum expectation value

O|T(p(zy) - - - Y1) * - - $1) -+ )|0) (16.138)

\/_
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Fig. 16.3 Meson-proton scattering
with kinematics as shown.

r.’

ps p's

which, as will be shown in the next chapter, stands for the sum of all
Feynman diagrams with lines representing scalar particles entering or
leaving at x, fermions entering or antifermions leaving at z;, and anti-
fermions entering or fermions leaving at y;. In the reduction formula
the Klein-Gordon and Dirac operators lop off the legs of the external
particles and put them on their mass shells, with the factors

fd4xfp(x)(Dz + m2) fd4x ﬁpls:(x)(i% - m) ete.

The factors i/A/Z, —i/N/Zs, i/N/Z for each boson, fermion, and
antifermion, respectively, renormalize their wave functions appropri-
ately so that the final result may be equated directly to the transition
amplitude.

As an illustrative example of considerable interest, consider the
scattering of a meson of type 7z by a proton, with the kinematics as
shown in Fig. 16.3. Applying the reduction procedure to the S matrix
gives

Sy = {¢;p's’ out|g;ps in)
= b+ 5 [ dwd dud f3E)Te + 4

X [Upw (@) @V — m)] 0| T W (') (2) 0i(x) 0i(2”))|0)
X [(—1V. — m)U,(2)]:,(0= + p2)fo(x) (16.139)

In (16.139), x and m denote the meson and proton masses, respec-
tively; 87 5= 0 only if the in- and out-states coincide, that is, for for-
ward scattering. In carrying through practical calculations, plane
waves (16.9) and (16.88) are inserted

—‘iQ‘Z

_ 1
fo(@) = ——(2‘”)% \/2—(‘)‘16

(16.140)
Une) = oy | u(p e
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as the limiting cases of normalizable packet solutions; with this
continuum normalization

6 = 8%(q' — q) 8*(p’ — p) dee

16.10 In- and Out-states and the Reduction Formula for Photons

The final extension of the formal developments of this chapter to the
radiation field must be made separately owing to the complications
arising from the noncovariant gauge choice and quantization procedure
applied to the Maxwell theory.

In the radiation gauge the vector potential is transverse and sat-
isfies the wave equation

OA = edgj** (16.141)
where

. ., OE
eoj** = eoj + —a-t—l

with
V-E = ep = eojo and V.j*=0

defines the transverse current source. The longitudinal part of the
vector potential vanishes in this gauge, and the scalar potential is
determined from Gauss’s law

V2Ao = €op

We then have two dynamically independent components of the
vector potential which obey wave equations (16.141) and one-time
commutation relations [see (15.9)]

[Ai(x,t),Ak(X,,t)] = [A'i(x;t);Ak(x’;t)] =0
[A:(x,0),4x(¥,0)] = 6% (x — X)) (16.142)

These are similar to the canonical theory for scalar fields, differing only
in that the mass is zero and that the field is transverse and therefore
only the transverse part of the & function, as defined in (14.16), appears.

In analogy with the discussion for the scalar field, we introduce
transverse in- (and out-) fields which are assigned properties as in
(16.5) and (16.6):

[P Ain(z)] = —i é%Ain(x) A =0 (16.143)
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From this it follows, as in (16.8), that A;,(z) creates only! the one-
photon states, with P2 = 0, from the vacuum. No mass counterterm
is introduced into (16.143), since the physical incident and emerging
photons are massless and obey the Einstein condition kk* = 0.

The Fourier expansion of A;,(x) is the same as that for free fields:

2
K@ = [ d%h ) [nleNAE) + a5 NAL@)
A=1

1

With Ak,)\(x) = »t/_(zﬂ-—T—z_k_
0

e—kag(J;,\) (16.144)

and, upon inversion,

@ik = ©f % AfA(2) - 9oAu(@)

= —if &% A}\(2),00Ain (@) (16.145)

Repeated application of al,(k,\) onto the vacuum state builds up the
general n-photon in-states, as in (16.10) and (16.11). Similar state-
ments apply to the out-fields and -states. As in the earlier discussions,
these are assumed to be complete. Continuing to imitate the discus-
sion of the scalar fields (16.14) and (16.52), we write for the relation of
Ain(x) a'nd Aout(x) to A(Z)

VZ3 Ain(x) = A@) — eof d*y Dz — )™ (y) (16.146)
V Z3 Aoui(z) = A(@) — eof dy Daav(® — )j*(¥) )
D,e; and D4, are the m — 0 limit of the corresponding Green’s func-
tions Ar. and Auay, and 4/Z; is introduced so that the in and out
matrix elements from the vacuum to the one-photon state are normal-
ized to 1.
So far, all is completely analogous to the scalar theory discussion.
The asymptotic condition, always in the sense of the weak operator
convergence (16.20), is

A(X,t) - '\/73 Ain(x,t) ast{— — »

7 .147
A(x,t) = V/Z;5 Aoun(x,t) ast— + (16.147)

1 We ignore here the infrared difficulty raised by the possibility of states of
more than one photon of ~0 frequency. This problem is handled separately in
all practical calculations, as we saw in Chap. 8, and it will be further discussed in
Chap. 17.
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In developing the reduction formula for photons, there is only the
one minor change from the scalar field result (16.81)

\/—fa-(xz)([-_—lz. + m?)O| - - - (@) - - - |0)
1 —
—’;/—Z—;Ak.-.x.-(xf)l'_—lz.-'@l <o Ad) - - - |0)

- - \/LZ_sA;..,M<x.-)EEZ<01 Cec Auw) - - - [0) (16.148)
For example, if a photon &'\’ is removed from an out-state, (16.80) is
replaced by
(y(&'\) Outlso(x)la in) = (v outle(z)|a — (K'\') in)
- [ a4 o outiT U e@le imTAEAG)  16.149)

’\/Za

The additional minus sign in (16.149), not shared by (16.80), comes
from the space-like nature of the polarization unit vector

et = —geg = —1

Thus far the lack of explicit covariance of our quantization proce-
dure has introduced no new problems. That the S matrix is gauge
invariant and therefore by (16.70) Lorentz invariant in the presence of
electromagnetic interactions will be shown, term by term, from a series
expansion in powers of the strengths of the interaction currents in the
following chapter. To low orders in the interaction, this has already
been established by explicit calculation in the propagator approach in
Chaps. 7 and 8.

Here we show only that the normalization constant Z; is gauge
invariant, as are the rest of the terms in the defining equation (16.146).

As a preview of the general renormalization discussion, we remark
that this is an important property, not shared by the Z, and Z of charge-
bearing fermion and boson fields. Recall from Chap. 8 that we found,
when all the pieces had been put together in the calculation of the
vertex to order €%, that the only cutoff-dependent constant remaining
there was the Z; that renormalized the photon wave function and the
charge according to e = V'Z3 eo. The Z; there coincides, as we shall
see, with the photon Z; here, and the gauge invariance of the numerical
value of the physical charge depends on the gauge invariance of Z,.
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16.11 Spectral Representation for Photons

We again imitate the discussion of the scalar field and turn to the
vacuum expectation value of the commutator

iD(z,2")" = (0|[44(2),4;(=")1|0) (16.150)

We have some difficulty in establishing a spectral representation
for D}i* owing to the lack of explicit Lorentz invariance of our treat-
ment of the Maxwell theory. Consider first

(Ol 4:(2) 4510y = ), eio (0| A(0)lm)n| 4;(0)[0)

n

_f = i 16.15
= [ % b@Iepi(g) (16.151)

which defines the spectral amplitude in the by-now-familiar way:

pii(@) = Y, (014:(0)|n)n|4;(0)|0)(2m)?8*(pn — )  (16.152)

Also as in (16.37) we may separate out the one-photon state

(OlA(2)|pN) = V' Z; (0|Ain(2)|pN) (16.153)
This gives

2
pii(@) = Z:d(g?) Y, (g NeigN) + mii(g) (16.154)
A=1

The second term of the commutator (16.150) can also be put in terms
of this spectral amplitude if we invoke the 3C€® invariance of electro-
dynamics. Under the § = JC® transformation (15.154),

0A(z)6! = — A(—2) and 6|0) = |0)

This gives, upon writing 3 = UK, where K denotes complex conjuga-
tion,
(0]4;(2") A:(2)|0) = (KO|KA;(z") Ai(2)0)*
= (0|04,(z")6"10A(x)6-1|0)*
= (0|A«(—=z)4;(—")|0) (16.155)
In writing the last form we used the identity (4|B)* = (B|A4) together
with the hermiticity of the field amplitude. This shows that p;;(q) is

symmetric in its indices and, together with (16.152), that it is a real
function of ¢:

pii(@) = pii(g) = pii(®)* (16.156)
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Inserting in (16.150) and using (16.151) and (16.154), we find
Dj(z — ') = Z3;Dyj(x — 2')*r
. [ d* ) , ) ,
i [ g3 @) (e — re=N)m(g)  (16.157)
where

Dij(x — 2')¥

laf®

To explore the properties of m;;(q), we follow the method of Evans and
Fulton,! who found it convenient to consider first, instead of (16.152),
the gauge-invariant Lorentz tensor

Ju(@) = Y, (017u(0)In)nl,(0)|0)(27)%*(pn — )  (16.158)

n

y d4q —1g°(z—2' iq-(z—z' 9:3;
=i [ 8 o@ialg e — o) (3, - B

The current operators are constructed from the fields that are the
sources of the electromagnetic field, and, in addition to being gauge-
invariant four-vectors, satisfy a differential current conservation la<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>